論文の概要: Quantum Convolutional Neural Networks are (Effectively) Classically Simulable
- arxiv url: http://arxiv.org/abs/2408.12739v1
- Date: Thu, 22 Aug 2024 21:46:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-26 16:38:31.553732
- Title: Quantum Convolutional Neural Networks are (Effectively) Classically Simulable
- Title(参考訳): 量子畳み込みニューラルネットワークは(効果的に)古典的にシミュレートできる
- Authors: Pablo Bermejo, Paolo Braccia, Manuel S. Rudolph, Zoë Holmes, Lukasz Cincio, M. Cerezo,
- Abstract要約: 量子畳み込みニューラルネットワーク(QCNN)は量子機械学習(QML)の有望なモデルとして広く見なされている
QCNNは入力状態の低身長測定で符号化された情報のみを操作可能であることを示す。
物質分類のフェーズに対して,QCNNの最大1024ドルキュービットに対するシャドーベースシミュレーションを提案する。
- 参考スコア(独自算出の注目度): 0.3562485774739681
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum Convolutional Neural Networks (QCNNs) are widely regarded as a promising model for Quantum Machine Learning (QML). In this work we tie their heuristic success to two facts. First, that when randomly initialized, they can only operate on the information encoded in low-bodyness measurements of their input states. And second, that they are commonly benchmarked on "locally-easy'' datasets whose states are precisely classifiable by the information encoded in these low-bodyness observables subspace. We further show that the QCNN's action on this subspace can be efficiently classically simulated by a classical algorithm equipped with Pauli shadows on the dataset. Indeed, we present a shadow-based simulation of QCNNs on up-to $1024$ qubits for phases of matter classification. Our results can then be understood as highlighting a deeper symptom of QML: Models could only be showing heuristic success because they are benchmarked on simple problems, for which their action can be classically simulated. This insight points to the fact that non-trivial datasets are a truly necessary ingredient for moving forward with QML. To finish, we discuss how our results can be extrapolated to classically simulate other architectures.
- Abstract(参考訳): 量子畳み込みニューラルネットワーク(QCNN)は量子機械学習(QML)の有望なモデルとして広く見なされている。
この作業では、彼らのヒューリスティックな成功を2つの事実に結びつける。
まず、ランダムに初期化されると、入力状態の低身長測定で符号化された情報のみを操作することができる。
第二に、これらの低体温観測可能空間に符号化された情報によって、状態が正確に分類できる「ローカル・イージー」データセットでベンチマークされることが一般的である。
さらに、この部分空間に対するQCNNの作用は、データセット上のパウリ影を備えた古典的アルゴリズムによって、効率的に古典的にシミュレートできることを示す。
実際、物質分類のフェーズに対して、最大1024ドルキュービットのQCNNのシャドーベースシミュレーションを提示する。
モデルは、古典的にシミュレートできる単純な問題に基づいてベンチマークされているため、ヒューリスティックな成功を示すことができる。
この洞察は、非自明なデータセットがQMLを前進させるのに本当に必要な要素であるという事実を指摘する。
結論として、他のアーキテクチャを古典的にシミュレートするために、我々の結果をどのように外挿するかについて議論する。
関連論文リスト
- What can we learn from quantum convolutional neural networks? [15.236546465767026]
量子データを扱うことは、隠れた特徴マップを通して物理系のパラメータを埋め込んだものと見なすことができる。
また, 適切に選択された基底状態埋め込みを持つQCNNが流体力学問題に利用できることを示す。
論文 参考訳(メタデータ) (2023-08-31T12:12:56Z) - ShadowNet for Data-Centric Quantum System Learning [188.683909185536]
本稿では,ニューラルネットワークプロトコルと古典的シャドウの強みを組み合わせたデータ中心学習パラダイムを提案する。
ニューラルネットワークの一般化力に基づいて、このパラダイムはオフラインでトレーニングされ、これまで目に見えないシステムを予測できる。
量子状態トモグラフィーおよび直接忠実度推定タスクにおいて、我々のパラダイムのインスタンス化を示し、60量子ビットまでの数値解析を行う。
論文 参考訳(メタデータ) (2023-08-22T09:11:53Z) - Variational Quantum Neural Networks (VQNNS) in Image Classification [0.0]
本稿では,量子最適化アルゴリズムを用いて量子ニューラルネットワーク(QNN)のトレーニングを行う方法について検討する。
本稿では、変分量子ニューラルネットワーク(VQNN)と呼ばれる入力層として、変分パラメータ化回路を組み込んだQNN構造を作成する。
VQNNは、MNIST桁認識(複雑でない)とクラック画像分類データセットで実験され、QNNよりも少ない時間で、適切なトレーニング精度で計算を収束させる。
論文 参考訳(メタデータ) (2023-03-10T11:24:32Z) - Tensor Networks or Decision Diagrams? Guidelines for Classical Quantum
Circuit Simulation [65.93830818469833]
テンソルネットワークと決定図は、異なる視点、用語、背景を念頭に、独立して開発されている。
これらの手法が古典的量子回路シミュレーションにどのようにアプローチするかを考察し、最も適用可能な抽象化レベルに関してそれらの相似性を考察する。
量子回路シミュレーションにおいて,テンソルネットワークの使い勝手の向上と決定図の使い勝手の向上に関するガイドラインを提供する。
論文 参考訳(メタデータ) (2023-02-13T19:00:00Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
我々は、データ再ロード技術を用いて、単一のキュービットで学習するケースに焦点を当てる。
我々は、Qiskit量子コンピューティングSDKを用いて、おもちゃと現実世界のデータセットに異なる定式化を実装した。
論文 参考訳(メタデータ) (2022-11-23T18:25:32Z) - DeepQMLP: A Scalable Quantum-Classical Hybrid DeepNeural Network
Architecture for Classification [6.891238879512672]
量子機械学習(QML)は、従来の機械学習(ML)タスクの潜在的なスピードアップと改善を約束している。
本稿では、古典的なディープニューラルネットワークアーキテクチャにインスパイアされたスケーラブルな量子古典ハイブリッドニューラルネットワーク(DeepQMLP)アーキテクチャを提案する。
DeepQMLPは、ノイズ下での推論において、最大25.3%の損失と7.92%の精度を提供する。
論文 参考訳(メタデータ) (2022-02-02T15:29:46Z) - Quantum-inspired Complex Convolutional Neural Networks [17.65730040410185]
我々は、より豊かな表現能力とより良い非線形性を持つ複素数値重みを利用することにより、量子刺激ニューロンを改善した。
我々は、高次元データを処理できる量子インスパイアされた畳み込みニューラルネットワーク(QICNN)のモデルを描く。
5つのQICNNの分類精度をMNISTとCIFAR-10データセットで検証した。
論文 参考訳(メタデータ) (2021-10-31T03:10:48Z) - Entangled Datasets for Quantum Machine Learning [0.0]
代わりに量子状態からなる量子データセットを使うべきだと我々は主張する。
NTangledデータセットの状態を生成するために量子ニューラルネットワークをどのように訓練するかを示す。
また、拡張性があり、量子回路によって準備された状態で構成される、別の絡み合いベースのデータセットについても検討する。
論文 参考訳(メタデータ) (2021-09-08T02:20:13Z) - The dilemma of quantum neural networks [63.82713636522488]
量子ニューラルネットワーク(QNN)は、古典的な学習モデルに対して何の恩恵も与えないことを示す。
QNNは、現実世界のデータセットの一般化が不十分な、極めて限られた有効モデル能力に悩まされている。
これらの結果から、現在のQNNの役割を再考し、量子的優位性で現実の問題を解決するための新しいプロトコルを設計せざるを得ない。
論文 参考訳(メタデータ) (2021-06-09T10:41:47Z) - Toward Trainability of Quantum Neural Networks [87.04438831673063]
量子ニューラルネットワーク(QNN)は、量子スピードアップを達成するために古典的ニューラルネットワークの一般化として提案されている。
QNNのトレーニングには、入力キュービット数に指数関数的に勾配速度がなくなるため、非常に大きなボトルネックが存在する。
木テンソルとステップ制御された構造を持つQNNを二分分類に適用し,ランダムな構造を持つQNNと比較してより高速な収束率と精度を示す。
論文 参考訳(メタデータ) (2020-11-12T08:32:04Z) - On the learnability of quantum neural networks [132.1981461292324]
本稿では,量子ニューラルネットワーク(QNN)の学習可能性について考察する。
また,概念をQNNで効率的に学習することができれば,ゲートノイズがあってもQNNで効果的に学習できることを示す。
論文 参考訳(メタデータ) (2020-07-24T06:34:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。