論文の概要: What can we learn from quantum convolutional neural networks?
- arxiv url: http://arxiv.org/abs/2308.16664v2
- Date: Fri, 5 Jul 2024 01:18:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-09 01:01:54.449884
- Title: What can we learn from quantum convolutional neural networks?
- Title(参考訳): 量子畳み込みニューラルネットワークから何が学べるか?
- Authors: Chukwudubem Umeano, Annie E. Paine, Vincent E. Elfving, Oleksandr Kyriienko,
- Abstract要約: 量子データを扱うことは、隠れた特徴マップを通して物理系のパラメータを埋め込んだものと見なすことができる。
また, 適切に選択された基底状態埋め込みを持つQCNNが流体力学問題に利用できることを示す。
- 参考スコア(独自算出の注目度): 15.236546465767026
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We can learn from analyzing quantum convolutional neural networks (QCNNs) that: 1) working with quantum data can be perceived as embedding physical system parameters through a hidden feature map; 2) their high performance for quantum phase recognition can be attributed to generation of a very suitable basis set during the ground state embedding, where quantum criticality of spin models leads to basis functions with rapidly changing features; 3) pooling layers of QCNNs are responsible for picking those basis functions that can contribute to forming a high-performing decision boundary, and the learning process corresponds to adapting the measurement such that few-qubit operators are mapped to full-register observables; 4) generalization of QCNN models strongly depends on the embedding type, and that rotation-based feature maps with the Fourier basis require careful feature engineering; 5) accuracy and generalization of QCNNs with readout based on a limited number of shots favor the ground state embeddings and associated physics-informed models. We demonstrate these points in simulation, where our results shed light on classification for physical processes, relevant for applications in sensing. Finally, we show that QCNNs with properly chosen ground state embeddings can be used for fluid dynamics problems, expressing shock wave solutions with good generalization and proven trainability.
- Abstract(参考訳): 量子畳み込みニューラルネットワーク(QCNN)の分析から学ぶことができる。
1) 量子データを扱うことは,隠れた特徴写像を通じて物理系パラメータを埋め込んだものとみなすことができる。
2) 量子位相認識の高性能性は, スピンモデルの量子臨界度が, 急速に変化する特徴を持つ基底関数へと導かれる基底状態の埋め込みにおいて, 非常に適切な基底セットの生成に起因していると考えられる。
3)QCNNのプール層は,高性能な意思決定境界の形成に寄与する基本関数の選択に責任を負い,学習プロセスは,少数のキュービット演算子をフル登録可能な観測値にマッピングするように,測定に適応する。
4) QCNNモデルの一般化は埋め込み型に強く依存しており, フーリエ基底を持つ回転型特徴写像は注意深い特徴工学を必要とする。
5) 有限ショット数に基づく読み出し付きQCNNの精度と一般化は, 基底状態埋め込みと関連する物理インフォームドモデルを好む。
我々はこれらの点をシミュレーションで示し、その結果、センシングの応用に関係した物理過程の分類に光を当てた。
最後に, 適切に選択された基底状態埋め込みを持つQCNNが流体力学問題に利用でき, 優れた一般化と訓練性を有する衝撃波解を表現できることを示す。
関連論文リスト
- ShadowNet for Data-Centric Quantum System Learning [188.683909185536]
本稿では,ニューラルネットワークプロトコルと古典的シャドウの強みを組み合わせたデータ中心学習パラダイムを提案する。
ニューラルネットワークの一般化力に基づいて、このパラダイムはオフラインでトレーニングされ、これまで目に見えないシステムを予測できる。
量子状態トモグラフィーおよび直接忠実度推定タスクにおいて、我々のパラダイムのインスタンス化を示し、60量子ビットまでの数値解析を行う。
論文 参考訳(メタデータ) (2023-08-22T09:11:53Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
本研究では,高エネルギー物理における量子データ学習の実践的問題への適用性について検討する。
我々は、量子畳み込みニューラルネットワークに基づくアンサッツを用いて、基底状態の量子位相を認識できることを数値的に示す。
これらのベンチマークで示された非自明な学習特性の観察は、高エネルギー物理学における量子データ学習アーキテクチャのさらなる探求の動機となる。
論文 参考訳(メタデータ) (2023-06-29T18:00:01Z) - Quantum Phase Recognition using Quantum Tensor Networks [0.0]
本稿では,教師付き学習タスクのためのテンソルネットワークにインスパイアされた浅部変分アンザツに基づく量子機械学習手法について検討する。
マルチスケールエンタングルメント再正規化アンサッツ (MERA) とツリーテンソルネットワーク (TTN) がパラメタライズド量子回路にインスパイアされた場合、テストセットの精度が$geq 98%に達する。
論文 参考訳(メタデータ) (2022-12-12T19:29:07Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
我々は、データ再ロード技術を用いて、単一のキュービットで学習するケースに焦点を当てる。
我々は、Qiskit量子コンピューティングSDKを用いて、おもちゃと現実世界のデータセットに異なる定式化を実装した。
論文 参考訳(メタデータ) (2022-11-23T18:25:32Z) - Quantum variational learning for entanglement witnessing [0.0]
この研究は量子アルゴリズムの潜在的な実装に焦点を当て、$n$ qubitsの単一レジスタ上で定義された量子状態を適切に分類することができる。
我々は「絡み合いの証人」という概念、すなわち、特定の特定の状態が絡み合うものとして識別できる期待値を持つ演算子を利用する。
我々は,量子ニューラルネットワーク(QNN)を用いて,絡み合いの目撃者の行動を再現する方法をうまく学習した。
論文 参考訳(メタデータ) (2022-05-20T20:14:28Z) - An Application of Quantum Machine Learning on Quantum Correlated
Systems: Quantum Convolutional Neural Network as a Classifier for Many-Body
Wavefunctions from the Quantum Variational Eigensolver [0.0]
最近提案された量子畳み込みニューラルネットワーク(QCNN)は、量子回路を使用するための新しいフレームワークを提供する。
ここでは、一次元逆場イジングモデル(TFIM)に対する変分量子固有解器の波動関数によるQCNNのトレーニング結果を示す。
QCNNは、それから遠く離れた波動関数によって訓練されたとしても、量子臨界点の周りの波動関数の対応する位相を予測するために訓練することができる。
論文 参考訳(メタデータ) (2021-11-09T12:08:49Z) - Entangled Datasets for Quantum Machine Learning [0.0]
代わりに量子状態からなる量子データセットを使うべきだと我々は主張する。
NTangledデータセットの状態を生成するために量子ニューラルネットワークをどのように訓練するかを示す。
また、拡張性があり、量子回路によって準備された状態で構成される、別の絡み合いベースのデータセットについても検討する。
論文 参考訳(メタデータ) (2021-09-08T02:20:13Z) - Quantum-tailored machine-learning characterization of a superconducting
qubit [50.591267188664666]
我々は,量子デバイスのダイナミクスを特徴付ける手法を開発し,デバイスパラメータを学習する。
このアプローチは、数値的に生成された実験データに基づいてトレーニングされた物理に依存しないリカレントニューラルネットワークより優れている。
このデモンストレーションは、ドメイン知識を活用することで、この特徴付けタスクの正確性と効率が向上することを示す。
論文 参考訳(メタデータ) (2021-06-24T15:58:57Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
量子機械学習(QML)は、量子コンピューティングの発展に頼って、大規模な複雑な機械学習問題を探求する、有望な分野として登場した。
本稿では、量子データ上で動作し、量子回路パラメータの学習を分散的に共有できる初めての完全量子連合学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-30T12:19:27Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
線形および非線形の層をユニタリ量子ゲートとして表現する方法を示し、量子モデルの基本的な励起を粒子として解釈する。
ニューラルネットワークの研究のための新しい視点と技術を開くことに加えて、量子定式化は光量子コンピューティングに適している。
論文 参考訳(メタデータ) (2021-03-08T17:24:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。