Feshbach resonances in cold collisions as a benchmark for state of the art ab initio theory
- URL: http://arxiv.org/abs/2408.13197v1
- Date: Fri, 23 Aug 2024 16:29:23 GMT
- Title: Feshbach resonances in cold collisions as a benchmark for state of the art ab initio theory
- Authors: Karl P. Horn, Meenu Upadhyay, Baruch Margulis, Daniel M. Reich, Edvardas Narevicius, Markus Meuwly, Christiane P. Koch,
- Abstract summary: Quantum resonances in collisions and reactions are a sensitive probe of the intermolecular forces.
This raises the question whether the sensitivity of such measurements is sufficient to assess the quality of theoretical models for the interaction.
We find that the ability to test the correct prediction of energy redistribution over molecular degrees of freedom is within reach, requiring only a modest improvement in energy resolution of current experiments.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum resonances in collisions and reactions are a sensitive probe of the intermolecular forces. They may dominate the final quantum state distribution, as recently observed for Feshbach resonances in a cold collision experiment (Science 380, 77 (2023)). This raises the question whether the sensitivity of such measurements is sufficient to assess the quality of theoretical models for the interaction. We here compare measured collision cross sections to those obtained with exact quantum coupled-channels scattering calculations for three different ab initio potential energy surfaces. We find that the ability to test the correct prediction of energy redistribution over molecular degrees of freedom is within reach, requiring only a modest improvement in energy resolution of current experiments. Such improvement will enable the separation of individual resonances and allow for an unambiguous experimental test of different theory approaches.
Related papers
- Accurate quantum-centric simulations of supramolecular interactions [1.641227459215045]
We present the first quantum-centric simulations of noncovalent interactions using a supramolecular approach.
Results mark significant progress in the application of quantum computing to chemical problems.
arXiv Detail & Related papers (2024-10-11T19:25:47Z) - Quantum control of ion-atom collisions beyond the ultracold regime [0.0]
We show that magnetically tunable Feshbach resonances can be used to control inelastic collisions between a single trapped Sr$+$ ion and Rb atoms.
With our model, we discover multiple measurable Feshbach resonances for magnetic fields from 0 to 400 G, which allow significant enhancement of spin-exchange rates at temperatures as high as 1 mK.
arXiv Detail & Related papers (2024-07-08T16:14:17Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Relaxation of maximally entangled quantum states of two nonequivalent
nuclear spins in a liquid [49.1574468325115]
We investigate the relaxation of pseudo-pure maximally entangled states (Bell states) of two nuclear spins 1H-13C belonging to a molecule in a liquid.
Our relaxation measurements reveal different relaxation rates for different Bell states.
arXiv Detail & Related papers (2024-03-06T18:34:24Z) - Ultracold coherent control of molecular collisions at a F\"orster
resonance [0.0]
We show that the precise preparation of a quantum superposition between three rotational states of an ultracold dipolar molecule generates controllable interferences.
This proposal represents a feasible protocol to achieve coherent control on ultracold molecular collisions in current experiments.
arXiv Detail & Related papers (2023-12-21T10:49:23Z) - Feshbach hypothesis of high-Tc superconductivity in cuprates [0.0]
We present a Feshbach perspective on the origin of strong pairing in Fermi-Hubbard type models.
Existing experimental and numerical results on hole-doped cuprates lead us to conjecture the existence of a light, long-lived, low-energy excited state of two holes.
The emergent Feshbach resonance we propose could also underlie superconductivity in other doped antiferromagnetic Mott insulators.
arXiv Detail & Related papers (2023-12-05T18:59:59Z) - Neural-network quantum states for ultra-cold Fermi gases [49.725105678823915]
This work introduces a novel Pfaffian-Jastrow neural-network quantum state that includes backflow transformation based on message-passing architecture.
We observe the emergence of strong pairing correlations through the opposite-spin pair distribution functions.
Our findings suggest that neural-network quantum states provide a promising strategy for studying ultra-cold Fermi gases.
arXiv Detail & Related papers (2023-05-15T17:46:09Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Weber number and the outcome of binary collisions between quantum
droplets [0.0]
Droplets formed from dilute Bose gases made up from binary mixtures of ultra cold atoms are considered.
Atoms losses of the droplets derived from self-evaporation and three-body scattering are quantified.
arXiv Detail & Related papers (2022-02-12T00:14:04Z) - Microscopy of an ultranarrow Feshbach resonance using a laser-based atom
collider: A quantum defect theory analysis [0.18665975431697424]
We study the interplay between a magnetic Feshbach resonance and a shape resonance in cold collisions of ultracold $rm 87Rb$ atoms.
By exerting control over a parameter space spanned by both collision energy and magnetic field, the width of a Feshbach resonance can be tuned over several orders of magnitude.
By conducting experiments at a collision energy matching the shape resonance and using the shape resonance as a magnifying lens we demonstrate a feature broadening to a magnetic width of 8 G compared to a predicted Feshbach resonance width $ll 0.1$mG.
arXiv Detail & Related papers (2021-12-31T12:50:18Z) - Dispersive readout of molecular spin qudits [68.8204255655161]
We study the physics of a magnetic molecule described by a "giant" spin with multiple $d > 2$ spin states.
We derive an expression for the output modes in the dispersive regime of operation.
We find that the measurement of the cavity transmission allows to uniquely determine the spin state of the qudits.
arXiv Detail & Related papers (2021-09-29T18:00:09Z) - Quantum Thermometry with a Dissipative Quantum Rabi System [1.430924337853801]
A finite-component system composed of a single two-level atom interacting with an optical cavity field mode exhibits a quantum phase transition.
We investigate the quantum thermometry of a thermal bath surrounding the atom with quantum optical probes.
arXiv Detail & Related papers (2021-05-27T01:47:57Z) - Uhlmann Fidelity and Fidelity Susceptibility for Integrable Spin Chains
at Finite Temperature: Exact Results [68.8204255655161]
We show that the proper inclusion of the odd parity subspace leads to the enhancement of maximal fidelity susceptibility in the intermediate range of temperatures.
The correct low-temperature behavior is captured by an approximation involving the two lowest many-body energy eigenstates.
arXiv Detail & Related papers (2021-05-11T14:08:02Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Resonant enhancement of three-body loss between strongly interacting
photons [47.30557822621873]
Rydberg polaritons provide an example of a rare type of system where three-body interactions can be as strong or even stronger than two-body interactions.
We show how the shape and strength of dissipative three-body forces can be universally enhanced for Rydberg polaritons.
arXiv Detail & Related papers (2020-10-19T18:21:49Z) - Testing collapse models with Bose-Einstein-Condensate interferometry [0.0]
We show that precision interferometry with Bose-Einstein condensed atoms can serve to lower the current empirical bound on the localization rate parameter.
In fact, the interplay between CSL-induced diffusion and dispersive atom-atom interactions results in an amplified sensitivity of the condensate to CSL.
arXiv Detail & Related papers (2020-08-31T13:00:58Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Exploring 2D synthetic quantum Hall physics with a quasi-periodically
driven qubit [58.720142291102135]
Quasi-periodically driven quantum systems are predicted to exhibit quantized topological properties.
We experimentally study a synthetic quantum Hall effect with a two-tone drive.
arXiv Detail & Related papers (2020-04-07T15:00:41Z) - Optical Magnetometer: Quantum Resonances at pumping repetition rate of
1/n of the Larmor frequency [58.720142291102135]
Quantum sub-resonances at a repetition rate of $1/n$ of the Larmor frequency of the magnetic field inside the shield are experimentally observed and theoretically explained.
Investigations in single alkali atoms cells as well as mixed alkali atoms of K and Rb are presented.
arXiv Detail & Related papers (2020-02-20T09:14:56Z) - Quantum decoherence by Coulomb interaction [58.720142291102135]
We present an experimental study of the Coulomb-induced decoherence of free electrons in a superposition state in a biprism electron interferometer close to a semiconducting and metallic surface.
The results will enable the determination and minimization of specific decoherence channels in the design of novel quantum instruments.
arXiv Detail & Related papers (2020-01-17T04:11:44Z) - Driving Quantum Correlated Atom-Pairs from a Bose-Einstein Condensate [0.0]
We investigate one such control protocol that demonstrates the resonant amplification of quasimomentum pairs from a Bose-Einstein condensate.
A classical external field that excites pairs of particles with the same energy but opposite momenta is reminiscent of the coherently-driven nonlinearity in a parametric amplifier crystal.
arXiv Detail & Related papers (2020-01-08T00:11:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.