論文の概要: PhysPart: Physically Plausible Part Completion for Interactable Objects
- arxiv url: http://arxiv.org/abs/2408.13724v1
- Date: Sun, 25 Aug 2024 04:56:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-27 18:09:49.722074
- Title: PhysPart: Physically Plausible Part Completion for Interactable Objects
- Title(参考訳): Phys Part: 相互作用可能なオブジェクトに対する物理的にプラズブルな部分補完
- Authors: Rundong Luo, Haoran Geng, Congyue Deng, Puhao Li, Zan Wang, Baoxiong Jia, Leonidas Guibas, Siyuang Huang,
- Abstract要約: 我々は、相互作用可能なオブジェクトに対する物理的に妥当な部分補完の問題に取り組む。
幾何学的条件付けを利用した拡散型部分生成モデルを提案する。
また、3Dプリンティング、ロボット操作、シーケンシャル部分生成にも応用しています。
- 参考スコア(独自算出の注目度): 13.113529869935592
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Interactable objects are ubiquitous in our daily lives. Recent advances in 3D generative models make it possible to automate the modeling of these objects, benefiting a range of applications from 3D printing to the creation of robot simulation environments. However, while significant progress has been made in modeling 3D shapes and appearances, modeling object physics, particularly for interactable objects, remains challenging due to the physical constraints imposed by inter-part motions. In this paper, we tackle the problem of physically plausible part completion for interactable objects, aiming to generate 3D parts that not only fit precisely into the object but also allow smooth part motions. To this end, we propose a diffusion-based part generation model that utilizes geometric conditioning through classifier-free guidance and formulates physical constraints as a set of stability and mobility losses to guide the sampling process. Additionally, we demonstrate the generation of dependent parts, paving the way toward sequential part generation for objects with complex part-whole hierarchies. Experimentally, we introduce a new metric for measuring physical plausibility based on motion success rates. Our model outperforms existing baselines over shape and physical metrics, especially those that do not adequately model physical constraints. We also demonstrate our applications in 3D printing, robot manipulation, and sequential part generation, showing our strength in realistic tasks with the demand for high physical plausibility.
- Abstract(参考訳): 相互作用可能なオブジェクトは、私たちの日常生活にどこにでもある。
近年の3D生成モデルの進歩により、これらのオブジェクトのモデリングの自動化が可能となり、3Dプリンティングからロボットシミュレーション環境の創出まで幅広い応用が期待できる。
しかしながら、3次元の形状や外観のモデリングでは大きな進歩があったが、特に相互作用可能な物体の物体物理のモデリングは、部品間の運動によって課される物理的制約のため、依然として困難である。
本稿では,物体に正確にフィットするだけでなく,スムーズな動きを許容する3D部品を生成することを目的として,相互作用可能な物体に対する物理的に可塑性な部分補完の問題に取り組む。
そこで本研究では,分類子なし誘導による幾何学的条件付けを利用した拡散型部分生成モデルを提案し,物理制約を安定度とモビリティ損失の集合として定式化し,サンプリングプロセスの導出を行う。
さらに、複雑な部分階層を持つオブジェクトに対して、従属部分の生成を実証し、逐次部分生成への道を開く。
実験では,運動成功率に基づく身体的可視性測定のための新しい指標を提案する。
我々のモデルは、特に物理的制約を適切にモデル化していないものよりも、形状や物理的な指標よりも、既存のベースラインよりも優れています。
また、3Dプリンティング、ロボット操作、シーケンシャルな部分生成などの応用を実証し、高い物理的妥当性を求める現実的なタスクにおいて、我々の強みを示す。
関連論文リスト
- Physics3D: Learning Physical Properties of 3D Gaussians via Video Diffusion [35.71595369663293]
ビデオ拡散モデルを用いて3Dオブジェクトの様々な物理的特性を学習する新しい手法である textbfPhysics3D を提案する。
本手法では,粘弾性材料モデルに基づく高一般化物理シミュレーションシステムを設計する。
弾性材料とプラスチック材料の両方を用いて, 本手法の有効性を実証した。
論文 参考訳(メタデータ) (2024-06-06T17:59:47Z) - Physically Compatible 3D Object Modeling from a Single Image [109.98124149566927]
単一画像を3次元物理オブジェクトに変換するフレームワークを提案する。
我々のフレームワークは、リコンストラクションプロセスに物理的な互換性を組み込む。
既存の手法よりも3Dモデルの物理的リアリズムを一貫して強化する。
論文 参考訳(メタデータ) (2024-05-30T21:59:29Z) - Atlas3D: Physically Constrained Self-Supporting Text-to-3D for Simulation and Fabrication [50.541882834405946]
我々は,テキストから3Dへの自動的実装であるAtlas3Dを紹介する。
提案手法は,新しい微分可能シミュレーションに基づく損失関数と,物理的にインスパイアされた正規化を組み合わせたものである。
我々は、Atlas3Dの有効性を広範囲な生成タスクを通して検証し、シミュレーションと実環境の両方で結果の3Dモデルを検証する。
論文 参考訳(メタデータ) (2024-05-28T18:33:18Z) - PhysDreamer: Physics-Based Interaction with 3D Objects via Video Generation [62.53760963292465]
PhysDreamerは物理に基づくアプローチで、静的な3Dオブジェクトにインタラクティブなダイナミクスを与える。
本稿では, 弾性物体の多様な例について考察し, ユーザスタディを通じて合成された相互作用の現実性を評価する。
論文 参考訳(メタデータ) (2024-04-19T17:41:05Z) - ROAM: Robust and Object-Aware Motion Generation Using Neural Pose
Descriptors [73.26004792375556]
本稿では,3次元オブジェクト認識キャラクタ合成における新しいシーンオブジェクトへのロバストさと一般化が,参照オブジェクトを1つも持たないモーションモデルをトレーニングすることで実現可能であることを示す。
我々は、オブジェクト専用のデータセットに基づいて訓練された暗黙的な特徴表現を活用し、オブジェクトの周りのSE(3)-同変記述体フィールドをエンコードする。
本研究では,3次元仮想キャラクタの動作と相互作用の質,および未知のオブジェクトを持つシナリオに対するロバスト性を大幅に向上することを示す。
論文 参考訳(メタデータ) (2023-08-24T17:59:51Z) - Fixing Malfunctional Objects With Learned Physical Simulation and
Functional Prediction [158.74130075865835]
機能不全な3Dオブジェクトが与えられたら、人間はその機能を推論し、どのように修正するかを理解するために精神シミュレーションを行うことができる。
人間の心的シミュレーションプロセスの模倣として,知覚と物理力学をシームレスに組み込んだ新しいフレームワークであるFixNetを提案する。
論文 参考訳(メタデータ) (2022-05-05T17:59:36Z) - SPAMs: Structured Implicit Parametric Models [30.19414242608965]
本研究では,非剛体物体の動きを形状とポーズの部分的不整合表現に構造的に分解する変形可能なオブジェクト表現として,構造化単純パラメトリックモデル(SPAM)を学習する。
複雑な変形物体の動きの深度配列の復元と追跡において、我々の部分認識形状とポーズ理解が最先端のパフォーマンスに繋がることを示す実験を行った。
論文 参考訳(メタデータ) (2022-01-20T12:33:46Z) - Occlusion resistant learning of intuitive physics from videos [52.25308231683798]
人工システムの鍵となる能力は、オブジェクト間の物理的相互作用を理解し、状況の将来的な結果を予測することである。
この能力は直感的な物理学と呼ばれ、近年注目されており、ビデオシーケンスからこれらの物理規則を学ぶためのいくつかの方法が提案されている。
論文 参考訳(メタデータ) (2020-04-30T19:35:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。