論文の概要: Is Functional Correctness Enough to Evaluate Code Language Models? Exploring Diversity of Generated Codes
- arxiv url: http://arxiv.org/abs/2408.14504v1
- Date: Sat, 24 Aug 2024 07:40:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-28 18:01:37.424872
- Title: Is Functional Correctness Enough to Evaluate Code Language Models? Exploring Diversity of Generated Codes
- Title(参考訳): 関数的正確性はコード言語モデルを評価するのに十分か? 生成コードの多様性を探る
- Authors: Heejae Chon, Seonghyeon Lee, Jinyoung Yeo, Dongha Lee,
- Abstract要約: 言語モデル(LM)は、自然言語の要求からコードを生成する素晴らしい能力を示した。
我々は、LMが生成するコードの多様性を、コード生成能力を評価するための重要な基準として強調する。
本稿では,コード間の類似性や機能的正しさを指標として,生成コードの多様性を評価するための体系的なアプローチを提案する。
- 参考スコア(独自算出の注目度): 17.95094238686012
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Language models (LMs) have exhibited impressive abilities in generating codes from natural language requirements. In this work, we highlight the diversity of code generated by LMs as a critical criterion for evaluating their code generation capabilities, in addition to functional correctness. Despite its practical implications, there is a lack of studies focused on assessing the diversity of generated code, which overlooks its importance in the development of code LMs. We propose a systematic approach to evaluate the diversity of generated code, utilizing various metrics for inter-code similarity as well as functional correctness. Specifically, we introduce a pairwise code similarity measure that leverages large LMs' capabilities in code understanding and reasoning, demonstrating the highest correlation with human judgment. We extensively investigate the impact of various factors on the quality of generated code, including model sizes, temperatures, training approaches, prompting strategies, and the difficulty of input problems. Our consistent observation of a positive correlation between the test pass score and the inter-code similarity score indicates that current LMs tend to produce functionally correct code with limited diversity.
- Abstract(参考訳): 言語モデル(LM)は、自然言語の要求からコードを生成する素晴らしい能力を示した。
本研究では,LMが生成するコードの多様性を,機能的正確性に加えて,コード生成能力を評価する重要な基準として強調する。
その実践的な意味にもかかわらず、生成されたコードの多様性を評価することに焦点を当てた研究が不足しており、コードLMの開発においてその重要性を見落としている。
本稿では,コード間の類似性や機能的正しさを指標として,生成コードの多様性を評価するための体系的なアプローチを提案する。
具体的には、コード理解と推論において、大規模なLMの能力を活用し、人間の判断と最も高い相関性を示すペアワイズコード類似度尺度を導入する。
モデルのサイズ,温度,トレーニングアプローチ,戦略の推進,入力問題の難しさなど,生成コードの品質に対するさまざまな要因の影響を幅広く検討する。
テストパススコアとコード間類似度スコアとの正の相関関係について一貫した観察を行ったところ、現在のLMは機能的に正しいコードを生成する傾向にあることがわかった。
関連論文リスト
- What's Wrong with Your Code Generated by Large Language Models? An Extensive Study [80.18342600996601]
大規模言語モデル(LLM)は、標準解に比べて短いがより複雑なコードを生成する。
3つのカテゴリと12のサブカテゴリを含む誤ったコードに対するバグの分類を開発し、一般的なバグタイプに対する根本原因を分析する。
そこで本研究では,LLMがバグタイプやコンパイラフィードバックに基づいて生成したコードを批判し,修正することのできる,自己批判を導入した新たな学習自由反復手法を提案する。
論文 参考訳(メタデータ) (2024-07-08T17:27:17Z) - An Empirical Study on Capability of Large Language Models in Understanding Code Semantics [4.638578225024275]
コードのための大規模言語モデル(コードLLM)は、様々なソフトウェア工学(SE)タスクで顕著なパフォーマンスを示している。
本稿では,コード意味論の理解におけるLLMの能力を評価するためのフレームワークであるEMPICAを紹介する。
論文 参考訳(メタデータ) (2024-07-04T03:40:58Z) - Exploring Multi-Lingual Bias of Large Code Models in Code Generation [55.336629780101475]
コード生成は、自然言語(NL)仕様に基づいて、コードを合成し、機能要件を満たすことを目的としている。
有効性にもかかわらず、我々は大規模コードモデル(LCM)の生成性能において顕著な多言語バイアスを観察する。
LCMは、英語で指示を与えると解を生成する能力を示すが、中国語などの他のNLで意味論的に等価な命令に直面すると、失敗する可能性がある。
論文 参考訳(メタデータ) (2024-04-30T08:51:49Z) - Comments as Natural Logic Pivots: Improve Code Generation via Comment Perspective [85.48043537327258]
本稿では, MANGO (comMents As Natural loGic pivOts) を提案する。
その結果、MANGOは強いベースラインに基づいてコードパス率を大幅に改善することがわかった。
論理的なコメントの復号化戦略の堅牢性は、考えの連鎖よりも顕著に高い。
論文 参考訳(メタデータ) (2024-04-11T08:30:46Z) - Mutation-based Consistency Testing for Evaluating the Code Understanding
Capability of LLMs [5.549095839198671]
大きな言語モデル(LLM)は、自然言語とプログラミング言語の両方を処理する際、顕著な能力を示している。
本稿では,LLMのコード理解性能を評価する新しい手法を提案し,特にコードと記述の微妙な差異に着目した。
演算子置換やステートメント削除など,さまざまなタイプのコード突然変異を適用して,一貫性のないコード記述ペアを生成する。
我々は,現在最先端のコード生成ベンチマークであるHumanEval-Xを用いて,GPT-3.5とGPT-4の2つのLLMのケーススタディを行う。
論文 参考訳(メタデータ) (2024-01-11T14:27:43Z) - If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code
Empowers Large Language Models to Serve as Intelligent Agents [81.60906807941188]
大型言語モデル(LLM)は、自然言語と形式言語(コード)の組み合わせに基づいて訓練される
コードは、標準構文、論理一貫性、抽象化、モジュール性を備えた高レベルの目標を実行可能なステップに変換する。
論文 参考訳(メタデータ) (2024-01-01T16:51:20Z) - MAgIC: Investigation of Large Language Model Powered Multi-Agent in
Cognition, Adaptability, Rationality and Collaboration [102.41118020705876]
大規模言語モデル(LLM)は自然言語処理の分野で大きな進歩を遂げている。
アプリケーションがマルチエージェント環境に拡張されるにつれ、包括的な評価フレームワークの必要性が高まっている。
この研究は、マルチエージェント設定内でLLMを評価するために特別に設計された新しいベンチマークフレームワークを導入している。
論文 参考訳(メタデータ) (2023-11-14T21:46:27Z) - Testing LLMs on Code Generation with Varying Levels of Prompt
Specificity [0.0]
大規模言語モデル (LLM) は、人間のようなテキスト生成と処理を模倣する非並列的な技術を示している。
自然言語のプロンプトを実行可能なコードに変換する可能性は、ソフトウェア開発プラクティスの大きな変化を約束します。
論文 参考訳(メタデータ) (2023-11-10T23:41:41Z) - Benchmarking and Explaining Large Language Model-based Code Generation:
A Causality-Centric Approach [12.214585409361126]
大規模言語モデル(LLM)ベースのコード生成は複雑で強力なブラックボックスモデルである。
本稿では,プロンプトと生成されたコードの因果グラフに基づく新しい表現を提案する。
我々は,12以上の迅速な調整戦略で3つの人気のあるLCMを研究することで,我々のフレームワークが提供できる洞察について説明する。
論文 参考訳(メタデータ) (2023-10-10T14:56:26Z) - CodeScore: Evaluating Code Generation by Learning Code Execution [34.08307174529496]
本稿では,3つの入力フォーマット上で生成されたコードの関数的正当性を推定する大規模言語モデル(LLM)ベースのCEMであるCodeScoreを提案する。
CodeScoreは、他のCEMと比較して58.87%の相関性を向上し、最先端のパフォーマンスを達成し、3つの入力フォーマットを効果的に扱う。
論文 参考訳(メタデータ) (2023-01-22T02:59:59Z) - Enhancing Semantic Code Search with Multimodal Contrastive Learning and
Soft Data Augmentation [50.14232079160476]
コード検索のためのマルチモーダルコントラスト学習とソフトデータ拡張を用いた新しい手法を提案する。
我々は,6つのプログラミング言語を用いた大規模データセットにおけるアプローチの有効性を評価するために,広範囲な実験を行った。
論文 参考訳(メタデータ) (2022-04-07T08:49:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。