論文の概要: Compilation of Trotter-Based Time Evolution for Partially Fault-Tolerant Quantum Computing Architecture
- arxiv url: http://arxiv.org/abs/2408.14929v1
- Date: Tue, 27 Aug 2024 10:07:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-28 14:13:27.277316
- Title: Compilation of Trotter-Based Time Evolution for Partially Fault-Tolerant Quantum Computing Architecture
- Title(参考訳): 部分的フォールトトレラント量子コンピューティングアーキテクチャのためのトロッター時間進化のコンパイル
- Authors: Yutaro Akahoshi, Riki Toshio, Jun Fujisaki, Hirotaka Oshima, Shintaro Sato, Keisuke Fujii,
- Abstract要約: 2次元ハバードモデルハミルトンの時間発展をシミュレーションする効率的な方法を提案する。
解析の結果, 単純直列コンパイルに比べて10倍以上の高速化が得られた。
物理誤差率が$p_rm phys = 10-4$のデバイスの場合、地上でのエネルギー推定を高速化するためには、およそ6.5倍 104$ の物理量子ビットが必要であると推定する。
- 参考スコア(独自算出の注目度): 0.6449786007855248
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Achieving practical quantum speedup with limited resources is a crucial challenge in both academic and industrial communities. To address this, a partially fault-tolerant quantum computing architecture called ``space-time efficient analog rotation quantum computing architecture (STAR architecture)'' has been recently proposed. This architecture focuses on minimizing resource requirements while maximizing the precision of non-Clifford gates, essential for universal quantum computation. However, non-deterministic processes such as the repeat-until-success (RUS) protocol and state injection can introduce significant computational overhead. Therefore, optimizing the logical circuit to minimize this overhead by using efficient fault-tolerant operations is essential. This paper presents an efficient method for simulating the time evolution of the 2D Hubbard model Hamiltonian, a promising application of the STAR architecture. We present two techniques, parallel injection protocol and adaptive injection region updating, to reduce unnecessary time overhead specific to our architecture. By integrating these with the existing fSWAP technique, we develop an efficient Trotter-based time evolution operation for the 2D Hubbard model. Our analysis reveals an acceleration of over 10 times compared to naive serial compilation. This optimized compilation enables us to estimate the computational resources required for quantum phase estimation of the 2D Hubbard model. For devices with a physical error rate of $p_{\rm phys} = 10^{-4}$, we estimate that approximately $6.5 \times 10^4$ physical qubits are required to achieve faster ground state energy estimation of the $8\times8$ Hubbard model compared to classical computation.
- Abstract(参考訳): 限られた資源で実用的な量子スピードアップを実現することは、学術と工業の両方において重要な課題である。
これを解決するために,「時空効率的なアナログ回転量子コンピューティングアーキテクチャ(STARアーキテクチャ)」と呼ばれる部分的にフォールトトレラントな量子コンピューティングアーキテクチャが最近提案されている。
このアーキテクチャは、リソース要件の最小化と、普遍的な量子計算に不可欠な非クリフォードゲートの精度の最大化に焦点を当てている。
しかし、リピート・アンティル・サクセス(RUS)プロトコルや状態注入のような非決定論的プロセスは、計算オーバーヘッドを著しく引き起こす可能性がある。
したがって、効率的なフォールトトレラント演算を用いることで、このオーバーヘッドを最小限に抑えるために論理回路を最適化することが不可欠である。
本稿では,STARアーキテクチャの有望な応用である2次元ハバードモデルハミルトンの時間発展をシミュレーションする効率的な手法を提案する。
並列インジェクションプロトコルとアダプティブインジェクション領域の更新という2つの手法を提案する。
これらを既存のfSWAP手法と統合することにより、2D Hubbardモデルのための効率的なTrotterベースの時間進化演算を開発する。
解析の結果, 単純直列コンパイルに比べて10倍以上の高速化が得られた。
この最適化されたコンパイルにより、2次元ハバードモデルの量子位相推定に必要な計算資源を推定できる。
物理誤差率が$p_{\rm phys} = 10^{-4}$のデバイスの場合、古典計算と比較して8\times 8$ Hubbardモデルよりも高速な基底状態エネルギー推定を実現するために約6.5 \times 10^4$ physical qubitsが必要であると推定する。
関連論文リスト
- Optimizing Multi-level Magic State Factories for Fault-Tolerant Quantum Architectures [0.8642846017977626]
専用ゾーンをマルチレベルマジックステートファクトリと,効率的な論理演算のためのコアプロセッサとして考える。
提案したアーキテクチャでは、量子メモリを持つ量子コンピュータ上で実行される場合、T$--1015$の量子アルゴリズムに105$--108$の物理量子ビットと102$--104$の論理量子ビット数を必要とする。
論文 参考訳(メタデータ) (2024-11-06T21:25:34Z) - Practical quantum advantage on partially fault-tolerant quantum computer [0.6449786007855248]
我々は、早期FTQCデバイスにおける実用的な量子アドバンテージを実現するための代替手法を提案する。
我々のフレームワークは、空間的オーバーヘッドを最小限に抑えるために、部分的にフォールトトレラントな論理演算に基づいている。
フレームワークの潜在能力を生かした,有望なアプリケーションをいくつか紹介する。
論文 参考訳(メタデータ) (2024-08-27T07:58:09Z) - Subspace-Based Local Compilation of Variational Quantum Circuits for Large-Scale Quantum Many-Body Simulation [0.0]
本稿では,時間進化演算子をコンパイルするためのハイブリッド量子古典アルゴリズムを提案する。
精度を保ちながら、トロッタライゼーションに比べて95%の回路深さの低減を実現している。
我々は,LSVQCを用いて,短期量子コンピューティングアーキテクチャ上での量子シミュレーションの実行に必要なゲート数を推定する。
論文 参考訳(メタデータ) (2024-07-19T09:50:01Z) - Hardware-efficient variational quantum algorithm in trapped-ion quantum computer [0.0]
本研究では, トラップイオン量子シミュレータ, HEA-TI に適したハードウェア効率の変動量子アルゴリズムアンサッツについて検討する。
我々は、全てのイオン間のプログラム可能な単一量子ビット回転と大域スピンスピン相互作用を活用し、従来のゲートベース手法における資源集約型2量子ビットゲートへの依存を減らす。
論文 参考訳(メタデータ) (2024-07-03T14:02:20Z) - Optimizing quantum gates towards the scale of logical qubits [78.55133994211627]
量子ゲート理論の基本的な前提は、量子ゲートはフォールトトレランスの誤差閾値を超えることなく、大きなプロセッサにスケールできるということである。
ここでは、このような問題を克服できる戦略について報告する。
我々は、68個の周波数可変ビットの周波数軌跡をコレオグラフィーして、超伝導エラー中に単一量子ビットを実行することを示した。
論文 参考訳(メタデータ) (2023-08-04T13:39:46Z) - Partially Fault-tolerant Quantum Computing Architecture with
Error-corrected Clifford Gates and Space-time Efficient Analog Rotations [0.5658123802733283]
NISQとFTQCのギャップを埋めるための量子コンピューティングアーキテクチャを提案する。
初期のFTQCデバイスでは、約1.72ドル 107ドル クリフォード演算と3.75ドル 104ドル 任意の回転を64個の論理量子ビット上で行うことができる。
論文 参考訳(メタデータ) (2023-03-23T11:21:41Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
動的平均場理論(DMFT)は、ハバードモデルの局所グリーン関数をアンダーソン不純物のモデルにマッピングする。
不純物モデルを効率的に解くために、量子およびハイブリッド量子古典アルゴリズムが提案されている。
この研究は、ノイズの多いデジタル量子ハードウェアを用いたMott相転移の最初の計算を提示する。
論文 参考訳(メタデータ) (2021-12-10T17:32:15Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
本稿では,最適化問題における短期量子優位性の提案に着想を得た高忠実度ゲートセットを提案する。
3つのトランペット四重項のコヒーレントな多レベル制御を編成することにより、自然な3量子ビット計算ベースで作用する決定論的連続角量子位相ゲートの族を合成する。
論文 参考訳(メタデータ) (2021-08-03T17:49:09Z) - FastFlowNet: A Lightweight Network for Fast Optical Flow Estimation [81.76975488010213]
ディセンス光学フロー推定は、多くのロボットビジョンタスクで重要な役割を果たしています。
現在のネットワークはしばしば多くのパラメータを占有し、計算コストがかかる。
提案したFastFlowNetは、周知の粗大なやり方で、以下のイノベーションで機能する。
論文 参考訳(メタデータ) (2021-03-08T03:09:37Z) - Preparation of excited states for nuclear dynamics on a quantum computer [117.44028458220427]
量子コンピュータ上で励起状態を作成するための2つの異なる方法を研究する。
シミュレーションおよび実量子デバイス上でこれらの手法をベンチマークする。
これらの結果から,フォールトトレラントデバイスに優れたスケーリングを実現するために設計された量子技術が,接続性やゲート忠実性に制限されたデバイスに実用的なメリットをもたらす可能性が示唆された。
論文 参考訳(メタデータ) (2020-09-28T17:21:25Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
本研究では,トラベリングセールスマン問題に必要なキュービット数を大幅に削減できることを示す。
また、量子ビット効率と回路深さ効率のモデルを円滑に補間する符号化方式を提案する。
論文 参考訳(メタデータ) (2020-09-15T18:17:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。