論文の概要: Graph Attention Inference of Network Topology in Multi-Agent Systems
- arxiv url: http://arxiv.org/abs/2408.15449v1
- Date: Tue, 27 Aug 2024 23:58:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-29 17:32:58.800010
- Title: Graph Attention Inference of Network Topology in Multi-Agent Systems
- Title(参考訳): マルチエージェントシステムにおけるネットワークトポロジのグラフアテンション推定
- Authors: Akshay Kolli, Reza Azadeh, Kshitj Jerath,
- Abstract要約: 本研究は,マルチエージェントシステムの将来の状態を予測するためのアテンションメカニズムを活用する,機械学習に基づく新しいソリューションを提案する。
次に、注目値の強さからグラフ構造を推定する。
提案したデータ駆動型グラフアテンション機械学習モデルにより,マルチエージェントシステムにおけるネットワークトポロジを同定できることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Accurately identifying the underlying graph structures of multi-agent systems remains a difficult challenge. Our work introduces a novel machine learning-based solution that leverages the attention mechanism to predict future states of multi-agent systems by learning node representations. The graph structure is then inferred from the strength of the attention values. This approach is applied to both linear consensus dynamics and the non-linear dynamics of Kuramoto oscillators, resulting in implicit learning the graph by learning good agent representations. Our results demonstrate that the presented data-driven graph attention machine learning model can identify the network topology in multi-agent systems, even when the underlying dynamic model is not known, as evidenced by the F1 scores achieved in the link prediction.
- Abstract(参考訳): マルチエージェントシステムの基盤となるグラフ構造を正確に同定することは難しい課題である。
本研究は,ノード表現を学習することで,マルチエージェントシステムの将来の状態を予測するためのアテンションメカニズムを活用する,新しい機械学習ベースのソリューションを提案する。
次に、注目値の強さからグラフ構造を推定する。
このアプローチは、線形コンセンサス力学と倉本振動子の非線形力学の両方に適用され、良いエージェント表現を学習することでグラフを暗黙的に学習する。
提案したデータ駆動型グラフアテンション機械学習モデルは,リンク予測において達成されたF1スコアが示すように,基礎となる動的モデルが未知の場合でも,マルチエージェントシステムのネットワークトポロジを識別可能であることを示す。
関連論文リスト
- Discovering Governing equations from Graph-Structured Data by Sparse Identification of Nonlinear Dynamical Systems [0.27624021966289597]
グラフ構造化データ(SINDyG)から動的システムのスパース同定法を開発した。
SINDyGは、ネットワーク構造をスパースレグレッションに組み込んで、基礎となるネットワーク力学を説明するモデルパラメータを識別する。
論文 参考訳(メタデータ) (2024-09-02T17:51:37Z) - Dynamic Graph Representation Learning with Neural Networks: A Survey [0.0]
動的グラフ表現は新しい機械学習問題として現れた。
本稿では,動的グラフ学習に関連する問題とモデルをレビューすることを目的とする。
論文 参考訳(メタデータ) (2023-04-12T09:39:17Z) - Learning Dynamic Graph Embeddings with Neural Controlled Differential
Equations [21.936437653875245]
本稿では,時間的相互作用を持つ動的グラフの表現学習に焦点を当てる。
本稿では,ノード埋め込みトラジェクトリの連続的動的進化を特徴付ける動的グラフに対する一般化微分モデルを提案する。
本フレームワークは,セグメントを統合せずにグラフの進化を動的に表現できる機能など,いくつかの望ましい特徴を示す。
論文 参考訳(メタデータ) (2023-02-22T12:59:38Z) - GDBN: a Graph Neural Network Approach to Dynamic Bayesian Network [7.876789380671075]
スパースDAGの学習を目的としたスコアに基づくグラフニューラルネットワーク手法を提案する。
グラフニューラルネットワークを用いた手法は,動的ベイジアンネットワーク推論を用いた他の最先端手法よりも優れていた。
論文 参考訳(メタデータ) (2023-01-28T02:49:13Z) - Stretched and measured neural predictions of complex network dynamics [2.1024950052120417]
微分方程式のデータ駆動近似は、力学系のモデルを明らかにする従来の方法に代わる有望な方法である。
最近、ダイナミックスを研究する機械学習ツールとしてニューラルネットワークが採用されている。これは、データ駆動型ソリューションの検出や微分方程式の発見に使用できる。
従来の統計学習理論の限界を超えてモデルの一般化可能性を拡張することは可能であることを示す。
論文 参考訳(メタデータ) (2023-01-12T09:44:59Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
現代の力学系はますます非線形で複雑なものになりつつある。
予測と制御のためのコンパクトで包括的な表現でこれらのシステムをモデル化するフレームワークが必要である。
本手法は,教師付き学習手法を用いてこれらの基礎関数を学習する。
論文 参考訳(メタデータ) (2021-09-06T04:39:06Z) - TCL: Transformer-based Dynamic Graph Modelling via Contrastive Learning [87.38675639186405]
我々は,動的に進化するグラフを連続的に扱う,TCLと呼ばれる新しいグラフニューラルネットワークアプローチを提案する。
我々の知る限りでは、これは動的グラフ上の表現学習にコントラスト学習を適用する最初の試みである。
論文 参考訳(メタデータ) (2021-05-17T15:33:25Z) - Graph-Based Neural Network Models with Multiple Self-Supervised
Auxiliary Tasks [79.28094304325116]
グラフ畳み込みネットワークは、構造化されたデータポイント間の関係をキャプチャするための最も有望なアプローチである。
マルチタスク方式でグラフベースニューラルネットワークモデルを学習するための3つの新しい自己教師付き補助タスクを提案する。
論文 参考訳(メタデータ) (2020-11-14T11:09:51Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
グラフ畳み込みは近傍の集約を行い、最も重要なグラフ操作の1つである。
いくつかの最近の研究で、この性能劣化は過度に滑らかな問題に起因している。
本研究では,大きな受容領域からの情報を適応的に組み込むディープ適応グラフニューラルネットワーク(DAGNN)を提案する。
論文 参考訳(メタデータ) (2020-07-18T01:11:14Z) - Structural Landmarking and Interaction Modelling: on Resolution Dilemmas
in Graph Classification [50.83222170524406]
解法ジレンマの統一概念に基づくグラフ分類における本質的難易度の研究」
構造ランドマークと相互作用モデリングのためのインダクティブニューラルネットワークモデルSLIM'を提案する。
論文 参考訳(メタデータ) (2020-06-29T01:01:42Z) - Graph Representation Learning via Graphical Mutual Information
Maximization [86.32278001019854]
本稿では,入力グラフとハイレベルな隠蔽表現との相関を測る新しい概念であるGMIを提案する。
我々は,グラフニューラルエンコーダの入力と出力の間でGMIを最大化することで訓練された教師なし学習モデルを開発する。
論文 参考訳(メタデータ) (2020-02-04T08:33:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。