PersonalizedUS: Interpretable Breast Cancer Risk Assessment with Local Coverage Uncertainty Quantification
- URL: http://arxiv.org/abs/2408.15458v1
- Date: Wed, 28 Aug 2024 00:47:55 GMT
- Title: PersonalizedUS: Interpretable Breast Cancer Risk Assessment with Local Coverage Uncertainty Quantification
- Authors: Alek Fröhlich, Thiago Ramos, Gustavo Cabello, Isabela Buzatto, Rafael Izbicki, Daniel Tiezzi,
- Abstract summary: The current "golden standard" relies on manual BI-RADS scoring by clinicians, often leading to unnecessary biopsies and a significant mental health burden on patients and their families.
We introduce PersonalizedUS, an interpretable machine learning system that leverages recent advances in conformal prediction to provide precise and personalized risk estimates.
Concrete clinical benefits include up to a 65% reduction in requested biopsies among BI-RADS 4a and 4b lesions, with minimal to no missed cancer cases.
- Score: 2.6911061523689415
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Correctly assessing the malignancy of breast lesions identified during ultrasound examinations is crucial for effective clinical decision-making. However, the current "golden standard" relies on manual BI-RADS scoring by clinicians, often leading to unnecessary biopsies and a significant mental health burden on patients and their families. In this paper, we introduce PersonalizedUS, an interpretable machine learning system that leverages recent advances in conformal prediction to provide precise and personalized risk estimates with local coverage guarantees and sensitivity, specificity, and predictive values above 0.9 across various threshold levels. In particular, we identify meaningful lesion subgroups where distribution-free, model-agnostic conditional coverage holds, with approximately 90% of our prediction sets containing only the ground truth in most lesion subgroups, thus explicitly characterizing for which patients the model is most suitably applied. Moreover, we make available a curated tabular dataset of 1936 biopsied breast lesions from a recent observational multicenter study and benchmark the performance of several state-of-the-art learning algorithms. We also report a successful case study of the deployed system in the same multicenter context. Concrete clinical benefits include up to a 65% reduction in requested biopsies among BI-RADS 4a and 4b lesions, with minimal to no missed cancer cases.
Related papers
- AI-assisted prostate cancer detection and localisation on biparametric MR by classifying radiologist-positives [5.75804178993065]
We propose to develop deep learning models that improve the overall cancer diagnostic accuracy.
We develop a single voxel-level classification model, with a simple percentage threshold to determine positive cases.
Based on the presented experiments from two clinical data sets, we show that the proposed strategy can improve the diagnostic accuracy.
arXiv Detail & Related papers (2024-10-30T14:59:57Z) - Predictive uncertainty estimation in deep learning for lung carcinoma classification in digital pathology under real dataset shifts [2.309018557701645]
This paper evaluates whether predictive uncertainty estimation adds robustness to deep learning-based diagnostic decision-making systems.
We first investigate three popular methods for improving predictive uncertainty: Monte Carlo dropout, deep ensemble, and few-shot learning on lung adenocarcinoma classification as a primary disease in whole slide images.
arXiv Detail & Related papers (2024-08-15T21:49:43Z) - Boosting Medical Image-based Cancer Detection via Text-guided Supervision from Reports [68.39938936308023]
We propose a novel text-guided learning method to achieve highly accurate cancer detection results.
Our approach can leverage clinical knowledge by large-scale pre-trained VLM to enhance generalization ability.
arXiv Detail & Related papers (2024-05-23T07:03:38Z) - Using Pre-training and Interaction Modeling for ancestry-specific disease prediction in UK Biobank [69.90493129893112]
Recent genome-wide association studies (GWAS) have uncovered the genetic basis of complex traits, but show an under-representation of non-European descent individuals.
Here, we assess whether we can improve disease prediction across diverse ancestries using multiomic data.
arXiv Detail & Related papers (2024-04-26T16:39:50Z) - Uncertainty Quantification in Machine Learning Based Segmentation: A
Post-Hoc Approach for Left Ventricle Volume Estimation in MRI [0.0]
Left ventricular (LV) volume estimation is critical for valid diagnosis and management of various cardiovascular conditions.
Recent machine learning advancements, particularly U-Net-like convolutional networks, have facilitated automated segmentation for medical images.
This study proposes a novel methodology for post-hoc uncertainty estimation in LV volume prediction.
arXiv Detail & Related papers (2023-10-30T13:44:55Z) - Robust and Generalisable Segmentation of Subtle Epilepsy-causing
Lesions: a Graph Convolutional Approach [1.180462901068842]
Focal cortical dysplasia (FCD) is a leading cause of drug-resistant epilepsy, which can be cured by surgery.
"Ground truth" manual lesion masks are therefore expensive, limited and have large inter-rater variability.
We propose to approach the problem as semantic segmentation using graph convolutional networks (GCN), which allows our model to learn spatial relationships between brain regions.
arXiv Detail & Related papers (2023-06-02T08:56:56Z) - Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty [52.03490691733464]
We introduce DEviS, an easily implementable foundational model that seamlessly integrates into various medical image segmentation networks.
By leveraging subjective logic theory, we explicitly model probability and uncertainty for the problem of medical image segmentation.
DeviS incorporates an uncertainty-aware filtering module, which utilizes the metric of uncertainty-calibrated error to filter reliable data.
arXiv Detail & Related papers (2023-01-01T05:02:46Z) - Uncertainty estimations methods for a deep learning model to aid in
clinical decision-making -- a clinician's perspective [0.0]
There are several deep learning-inspired uncertainty estimation techniques, but few are implemented on medical datasets.
We compared dropout variational inference (DO), test-time augmentation (TTA), conformal predictions, and single deterministic methods for estimating uncertainty.
It may be important to evaluate multiple estimations techniques before incorporating a model into clinical practice.
arXiv Detail & Related papers (2022-10-02T17:54:54Z) - BI-RADS-Net: An Explainable Multitask Learning Approach for Cancer
Diagnosis in Breast Ultrasound Images [69.41441138140895]
This paper introduces BI-RADS-Net, a novel explainable deep learning approach for cancer detection in breast ultrasound images.
The proposed approach incorporates tasks for explaining and classifying breast tumors, by learning feature representations relevant to clinical diagnosis.
Explanations of the predictions (benign or malignant) are provided in terms of morphological features that are used by clinicians for diagnosis and reporting in medical practice.
arXiv Detail & Related papers (2021-10-05T19:14:46Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.