論文の概要: RLCP: A Reinforcement Learning-based Copyright Protection Method for Text-to-Image Diffusion Model
- arxiv url: http://arxiv.org/abs/2408.16634v1
- Date: Thu, 29 Aug 2024 15:39:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-30 13:12:46.438756
- Title: RLCP: A Reinforcement Learning-based Copyright Protection Method for Text-to-Image Diffusion Model
- Title(参考訳): RLCP:テキスト・画像拡散モデルのための強化学習に基づく著作権保護手法
- Authors: Zhuan Shi, Jing Yan, Xiaoli Tang, Lingjuan Lyu, Boi Faltings,
- Abstract要約: テキスト・画像拡散モデルのための強化学習に基づく著作権保護(RLCP)手法を提案する。
提案手法は,モデル生成データセットの品質を維持しつつ,著作権侵害コンテンツの生成を最小限に抑える。
- 参考スコア(独自算出の注目度): 42.77851688874563
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The increasing sophistication of text-to-image generative models has led to complex challenges in defining and enforcing copyright infringement criteria and protection. Existing methods, such as watermarking and dataset deduplication, fail to provide comprehensive solutions due to the lack of standardized metrics and the inherent complexity of addressing copyright infringement in diffusion models. To deal with these challenges, we propose a Reinforcement Learning-based Copyright Protection(RLCP) method for Text-to-Image Diffusion Model, which minimizes the generation of copyright-infringing content while maintaining the quality of the model-generated dataset. Our approach begins with the introduction of a novel copyright metric grounded in copyright law and court precedents on infringement. We then utilize the Denoising Diffusion Policy Optimization (DDPO) framework to guide the model through a multi-step decision-making process, optimizing it using a reward function that incorporates our proposed copyright metric. Additionally, we employ KL divergence as a regularization term to mitigate some failure modes and stabilize RL fine-tuning. Experiments conducted on 3 mixed datasets of copyright and non-copyright images demonstrate that our approach significantly reduces copyright infringement risk while maintaining image quality.
- Abstract(参考訳): テキストから画像への生成モデルの高度化は、著作権侵害の基準と保護を定義し、強制する上で複雑な問題を引き起こしている。
ウォーターマーキングやデータセットの重複といった既存の手法は、標準化されたメトリクスの欠如と拡散モデルにおける著作権侵害に対処する固有の複雑さのために、包括的なソリューションを提供できない。
これらの課題に対処するため,テキスト・ツー・イメージ拡散モデルのための強化学習に基づく著作権保護手法を提案し,モデル生成データセットの品質を維持しながら著作権侵害コンテンツの生成を最小限にする。
当社のアプローチは,著作権法と裁判所による侵害の先例に基づく,新たな著作権基準の導入から始まります。
そこで,我々はDDPO(Denoising Diffusion Policy Optimization)フレームワークを用いて多段階の意思決定プロセスを通じてモデルを誘導し,提案した著作権基準を組み込んだ報酬関数を用いてモデルを最適化する。
さらに、故障モードを緩和し、RL微調整を安定化するために、正規化用語としてKL発散を用いる。
著作権と非著作権の画像の混合データセットを用いた実験により,画像品質を維持しながら著作権侵害のリスクを著しく低減することを示した。
関連論文リスト
- Copyright-Aware Incentive Scheme for Generative Art Models Using Hierarchical Reinforcement Learning [42.63462923848866]
我々は,著作権法と裁判所における侵害に関する前例に基づく,新たな著作権基準を導入する。
次に、TRAK法を用いてデータ保持者の貢献度を推定する。
我々は,各ラウンドの予算とデータ保持者の報酬を決定するため,強化学習に基づく階層的な予算配分手法を設計する。
論文 参考訳(メタデータ) (2024-10-26T13:29:43Z) - Strong Copyright Protection for Language Models via Adaptive Model Fusion [15.48692649098646]
Copyright-Protecting Fusion (CP-Fuse) は、言語モデルを適応的に組み合わせて保護された物質の再生を最小限にするアルゴリズムである。
その結果,CP-Fuseは高品質なテキストとコード生成を維持しつつ,著作権のあるコンテンツの記憶を著しく減少させることがわかった。
論文 参考訳(メタデータ) (2024-07-29T15:32:30Z) - Evaluating Copyright Takedown Methods for Language Models [100.38129820325497]
言語モデル(LM)は、潜在的に著作権のある資料を含む様々なデータに対する広範な訓練からその能力を引き出す。
本稿では,LMの著作権削除の可能性と副作用を初めて評価する。
システムプロンプトの追加、デコード時間フィルタリングの介入、未学習アプローチなど、いくつかの戦略を検討する。
論文 参考訳(メタデータ) (2024-06-26T18:09:46Z) - ©Plug-in Authorization for Human Content Copyright Protection in Text-to-Image Model [71.47762442337948]
最先端のモデルは、オリジナルクリエーターを信用せずに高品質なコンテンツを作成する。
本稿では,3つの操作 – 追加,抽出,組み合わせ – を導入した著作権プラグイン認証フレームワークを提案する。
抽出により、クリエーターは侵害モデルから著作権を回復することができ、組み合わせることでユーザーは異なる著作権プラグインをマージすることができる。
論文 参考訳(メタデータ) (2024-04-18T07:48:00Z) - CPR: Retrieval Augmented Generation for Copyright Protection [101.15323302062562]
本稿では,著作権保護の強いRAGの新しい手法であるRetrieval(CPR)を用いたCopyProtected生成について紹介する。
CPRは、取得した画像のセットに拡散モデルの出力を条件付けることができる。
CPRは、攻撃者が生成した画像から抽出できる可能性のある情報の量を制限するNear Access Freeness (NAF) を満たすことを証明している。
論文 参考訳(メタデータ) (2024-03-27T18:09:55Z) - A Dataset and Benchmark for Copyright Infringement Unlearning from Text-to-Image Diffusion Models [52.49582606341111]
著作権法は、クリエイティブ作品を再生、配布、収益化する排他的権利をクリエイターに与えている。
テキスト・ツー・イメージ・ジェネレーションの最近の進歩は、著作権の執行に重大な課題をもたらしている。
CLIP、ChatGPT、拡散モデルを調和させてデータセットをキュレートする新しいパイプラインを導入する。
論文 参考訳(メタデータ) (2024-01-04T11:14:01Z) - CopyScope: Model-level Copyright Infringement Quantification in the
Diffusion Workflow [6.6282087165087304]
著作権侵害の定量化は、AIが生成した画像著作権トレーサビリティへの第一かつ挑戦的なステップである。
モデルレベルからAI生成画像の侵害を定量化する新しいフレームワークであるCopyScopeを提案する。
論文 参考訳(メタデータ) (2023-10-13T13:08:09Z) - FT-Shield: A Watermark Against Unauthorized Fine-tuning in Text-to-Image Diffusion Models [64.89896692649589]
テキスト・画像拡散モデルの微調整に適した透かしシステムであるFT-Shieldを提案する。
FT-Shieldは新しい透かしの生成と検出戦略を設計することで著作権保護の課題に対処する。
論文 参考訳(メタデータ) (2023-10-03T19:50:08Z) - Can Copyright be Reduced to Privacy? [23.639303165101385]
アルゴリズムの安定性は、コピーを検出する実用的なツールとして認識されるかもしれないが、そのようなコピーは必ずしも著作権侵害を構成するものではない、と我々は主張する。
著作権侵害の確立の基準として採択された場合、アルゴリズム的安定性は著作権法の意図された目的を損なう可能性がある。
論文 参考訳(メタデータ) (2023-05-24T07:22:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。