How Knowledge Distillation Mitigates the Synthetic Gap in Fair Face Recognition
- URL: http://arxiv.org/abs/2408.17399v1
- Date: Fri, 30 Aug 2024 16:35:28 GMT
- Title: How Knowledge Distillation Mitigates the Synthetic Gap in Fair Face Recognition
- Authors: Pedro C. Neto, Ivona Colakovic, Sašo Karakatič, Ana F. Sequeira,
- Abstract summary: Given a pretrained Teacher model trained on a real dataset, we show that carefully utilising synthetic datasets can yield surprising results.
Using Knowledge Distillation (KD) leads to performance gains across all ethnicities and decreased bias.
This approach addresses the limitations of synthetic data training, improving both the accuracy and fairness of face recognition models.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Leveraging the capabilities of Knowledge Distillation (KD) strategies, we devise a strategy to fight the recent retraction of face recognition datasets. Given a pretrained Teacher model trained on a real dataset, we show that carefully utilising synthetic datasets, or a mix between real and synthetic datasets to distil knowledge from this teacher to smaller students can yield surprising results. In this sense, we trained 33 different models with and without KD, on different datasets, with different architectures and losses. And our findings are consistent, using KD leads to performance gains across all ethnicities and decreased bias. In addition, it helps to mitigate the performance gap between real and synthetic datasets. This approach addresses the limitations of synthetic data training, improving both the accuracy and fairness of face recognition models.
Related papers
- Unveiling the Flaws: Exploring Imperfections in Synthetic Data and Mitigation Strategies for Large Language Models [89.88010750772413]
Synthetic data has been proposed as a solution to address the issue of high-quality data scarcity in the training of large language models (LLMs)
Our work delves into these specific flaws associated with question-answer (Q-A) pairs, a prevalent type of synthetic data, and presents a method based on unlearning techniques to mitigate these flaws.
Our work has yielded key insights into the effective use of synthetic data, aiming to promote more robust and efficient LLM training.
arXiv Detail & Related papers (2024-06-18T08:38:59Z) - PairCFR: Enhancing Model Training on Paired Counterfactually Augmented Data through Contrastive Learning [49.60634126342945]
Counterfactually Augmented Data (CAD) involves creating new data samples by applying minimal yet sufficient modifications to flip the label of existing data samples to other classes.
Recent research reveals that training with CAD may lead models to overly focus on modified features while ignoring other important contextual information.
We employ contrastive learning to promote global feature alignment in addition to learning counterfactual clues.
arXiv Detail & Related papers (2024-06-09T07:29:55Z) - Mind the Gap Between Synthetic and Real: Utilizing Transfer Learning to Probe the Boundaries of Stable Diffusion Generated Data [2.6016285265085526]
Student models show a significant drop in accuracy compared to models trained on real data.
By training these layers using either real or synthetic data, we reveal that the drop mainly stems from the model's final layers.
Our results suggest an improved trade-off between the amount of real training data used and the model's accuracy.
arXiv Detail & Related papers (2024-05-06T07:51:13Z) - Massively Annotated Datasets for Assessment of Synthetic and Real Data in Face Recognition [0.2775636978045794]
We study the drift between the performance of models trained on real and synthetic datasets.
We conduct studies on the differences between real and synthetic datasets on the attribute set.
Interestingly enough, we have verified that while real samples suffice to explain the synthetic distribution, the opposite could not be further from being true.
arXiv Detail & Related papers (2024-04-23T17:10:49Z) - SDFR: Synthetic Data for Face Recognition Competition [51.9134406629509]
Large-scale face recognition datasets are collected by crawling the Internet and without individuals' consent, raising legal, ethical, and privacy concerns.
Recently several works proposed generating synthetic face recognition datasets to mitigate concerns in web-crawled face recognition datasets.
This paper presents the summary of the Synthetic Data for Face Recognition (SDFR) Competition held in conjunction with the 18th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2024)
The SDFR competition was split into two tasks, allowing participants to train face recognition systems using new synthetic datasets and/or existing ones.
arXiv Detail & Related papers (2024-04-06T10:30:31Z) - A Discrepancy Aware Framework for Robust Anomaly Detection [51.710249807397695]
We present a Discrepancy Aware Framework (DAF), which demonstrates robust performance consistently with simple and cheap strategies.
Our method leverages an appearance-agnostic cue to guide the decoder in identifying defects, thereby alleviating its reliance on synthetic appearance.
Under the simple synthesis strategies, it outperforms existing methods by a large margin. Furthermore, it also achieves the state-of-the-art localization performance.
arXiv Detail & Related papers (2023-10-11T15:21:40Z) - Bridging the Gap: Enhancing the Utility of Synthetic Data via
Post-Processing Techniques [7.967995669387532]
generative models have emerged as a promising solution for generating synthetic datasets that can replace or augment real-world data.
We propose three novel post-processing techniques to improve the quality and diversity of the synthetic dataset.
Experiments show that Gap Filler (GaFi) effectively reduces the gap with real-accuracy scores to an error of 2.03%, 1.78%, and 3.99% on the Fashion-MNIST, CIFAR-10, and CIFAR-100 datasets, respectively.
arXiv Detail & Related papers (2023-05-17T10:50:38Z) - Minimizing the Accumulated Trajectory Error to Improve Dataset
Distillation [151.70234052015948]
We propose a novel approach that encourages the optimization algorithm to seek a flat trajectory.
We show that the weights trained on synthetic data are robust against the accumulated errors perturbations with the regularization towards the flat trajectory.
Our method, called Flat Trajectory Distillation (FTD), is shown to boost the performance of gradient-matching methods by up to 4.7%.
arXiv Detail & Related papers (2022-11-20T15:49:11Z) - CAFE: Learning to Condense Dataset by Aligning Features [72.99394941348757]
We propose a novel scheme to Condense dataset by Aligning FEatures (CAFE)
At the heart of our approach is an effective strategy to align features from the real and synthetic data across various scales.
We validate the proposed CAFE across various datasets, and demonstrate that it generally outperforms the state of the art.
arXiv Detail & Related papers (2022-03-03T05:58:49Z) - Transitioning from Real to Synthetic data: Quantifying the bias in model [1.6134566438137665]
This study aims to establish a trade-off between bias and fairness in the models trained using synthetic data.
We demonstrate there exist a varying levels of bias impact on models trained using synthetic data.
arXiv Detail & Related papers (2021-05-10T06:57:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.