論文の概要: Who Would Chatbots Vote For? Political Preferences of ChatGPT and Gemini in the 2024 European Union Elections
- arxiv url: http://arxiv.org/abs/2409.00721v1
- Date: Sun, 1 Sep 2024 13:40:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 11:36:58.178377
- Title: Who Would Chatbots Vote For? Political Preferences of ChatGPT and Gemini in the 2024 European Union Elections
- Title(参考訳): 2024年の欧州連合(EU)選挙におけるチャットボットとジェミニの政治的選好
- Authors: Michael Haman, Milan Školník,
- Abstract要約: この研究は、これらの生成人工知能(AI)システムにより、27のEU加盟国にまたがる欧州議会で代表される政党の評価に焦点を当てた。
Geminiはほとんど政治的な質問に答えることを拒んだが、ChatGPTは一貫して評価した。
調査では、欧州統合に対する態度や民主的価値観に対する認識など、評価に影響を及ぼす重要な要因を特定した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study examines the political bias of chatbots powered by large language models, namely ChatGPT and Gemini, in the context of the 2024 European Parliament elections. The research focused on the evaluation of political parties represented in the European Parliament across 27 EU Member States by these generative artificial intelligence (AI) systems. The methodology involved daily data collection through standardized prompts on both platforms. The results revealed a stark contrast: while Gemini mostly refused to answer political questions, ChatGPT provided consistent ratings. The analysis showed a significant bias in ChatGPT in favor of left-wing and centrist parties, with the highest ratings for the Greens/European Free Alliance. In contrast, right-wing parties, particularly the Identity and Democracy group, received the lowest ratings. The study identified key factors influencing the ratings, including attitudes toward European integration and perceptions of democratic values. The findings highlight the need for a critical approach to information provided by generative AI systems in a political context and call for more transparency and regulation in this area.
- Abstract(参考訳): 本研究では,2024年欧州議会議員選挙におけるチャットボットの政治バイアス,すなわちChatGPTとGeminiについて検討した。
この研究は、これらの生成人工知能(AI)システムにより、27のEU加盟国にまたがる欧州議会で代表される政党の評価に焦点を当てた。
この方法論は、両方のプラットフォームで標準化されたプロンプトを通じて、日々のデータ収集に関係していた。
Geminiはほとんど政治的な質問に答えることを拒んだが、ChatGPTは一貫して評価した。
この分析は、左派と中道派に有利なChatGPTに有意な偏見を示し、グリーンズ/欧州自由同盟の最高評価となった。
対照的に右翼政党、特にアイデンティティ・アンド・デモクラシー・グループが最も低い評価を受けた。
調査では、欧州統合に対する態度や民主的価値観に対する認識など、評価に影響を及ぼす重要な要因を特定した。
この発見は、生成的AIシステムが提供する情報に対する政治的文脈における批判的なアプローチの必要性を強調し、この分野における透明性と規制の強化を求めている。
関連論文リスト
- From Experts to the Public: Governing Multimodal Language Models in Politically Sensitive Video Analysis [48.14390493099495]
本稿では,大規模言語モデル(MM-LLM)の個人的および集団的検討を通じて,ガバナンスについて検討する。
筆者らは,まず10人のジャーナリストにインタビューを行い,専門家によるビデオ解釈のベースライン理解を確立した。第2に,包括的.AIを用いた議論に携わる一般市民114名を対象にした。
論文 参考訳(メタデータ) (2024-09-15T03:17:38Z) - Representation Bias in Political Sample Simulations with Large Language Models [54.48283690603358]
本研究は,大規模言語モデルを用いた政治サンプルのシミュレーションにおけるバイアスの同定と定量化を目的とする。
GPT-3.5-Turboモデルを用いて、米国選挙研究、ドイツ縦割り選挙研究、ズオビアオデータセット、中国家族パネル研究のデータを活用する。
論文 参考訳(メタデータ) (2024-07-16T05:52:26Z) - Llama meets EU: Investigating the European Political Spectrum through the Lens of LLMs [18.836470390824633]
我々は、Llama ChatをEU政治の文脈で監査し、モデルの政治的知識と文脈における推論能力を分析する。
我々は、欧州議会で議論された個々のユーロ党の演説に対して、さらなる微調整、すなわちラマ・チャット(Llama Chat)を適用して、その政治的傾向を再評価した。
論文 参考訳(メタデータ) (2024-03-20T13:42:57Z) - Whose Side Are You On? Investigating the Political Stance of Large Language Models [56.883423489203786]
大規模言語モデル(LLM)の政治的指向性について,8つのトピックのスペクトルにわたって検討する。
我々の調査は、中絶からLGBTQ問題まで8つのトピックにまたがるLLMの政治的整合性について考察している。
この結果から,ユーザはクエリ作成時に留意すべきであり,中立的なプロンプト言語を選択する際には注意が必要であることが示唆された。
論文 参考訳(メタデータ) (2024-03-15T04:02:24Z) - In Generative AI we Trust: Can Chatbots Effectively Verify Political
Information? [39.58317527488534]
本稿では,2つの大規模言語モデル(LLM)ベースのチャットボットであるChatGPTとBing Chatの比較分析を行い,政治的情報の正確性を検出する。
AI監査手法を使用して、新型コロナウイルス、ロシアによるウクライナに対する攻撃、ホロコースト、気候変動、LGBTQ+関連の議論の5つのトピックについて、チャットボットが真、偽、および境界線をどう評価するかを調査する。
その結果, ベースライン精度評価タスクにおけるChatGPTの性能が向上し, 72%のケースが事前学習なしで言語平均で正しく評価された。
論文 参考訳(メタデータ) (2023-12-20T15:17:03Z) - The Self-Perception and Political Biases of ChatGPT [0.0]
この貢献はOpenAIのLarge Language Model ChatGPTの自己認識と政治的偏見を分析している。
コンパステストは進歩主義とリバタリアンの見解に対する偏見を浮き彫りにした。
G7加盟国の政治調査では進歩的見解に対する偏見を示したが、権威主義とリバタリアンの見解の間に有意な偏見はなかった。
論文 参考訳(メタデータ) (2023-04-14T18:06:13Z) - The political ideology of conversational AI: Converging evidence on
ChatGPT's pro-environmental, left-libertarian orientation [0.0]
OpenAIは、最先端の対話モデルであるChatGPTを導入した。
本稿では,民主社会の最も重要な意思決定プロセスである政治選挙に焦点を当てる。
われわれはChatGPTの環境的、左自由主義的イデオロギーを明らかにする。
論文 参考訳(メタデータ) (2023-01-05T07:13:13Z) - Reaching the bubble may not be enough: news media role in online
political polarization [58.720142291102135]
分極を減らす方法は、異なる政治的指向を持つ個人に党間のニュースを分配することである。
本研究は、ブラジルとカナダにおける全国選挙の文脈において、これが成立するかどうかを考察する。
論文 参考訳(メタデータ) (2021-09-18T11:34:04Z) - News consumption and social media regulations policy [70.31753171707005]
我々は、ニュース消費とコンテンツ規制の間の相互作用を評価するために、反対のモデレーション手法であるTwitterとGabを強制した2つのソーシャルメディアを分析した。
以上の結果から,Twitterが追求するモデレーションの存在は,疑わしいコンテンツを著しく減少させることがわかった。
Gabに対する明確な規制の欠如は、ユーザが両方のタイプのコンテンツを扱う傾向を生じさせ、ディスカウント/エンドレスメントの振る舞いを考慮に入れた疑わしいコンテンツに対してわずかに好みを示す。
論文 参考訳(メタデータ) (2021-06-07T19:26:32Z) - Mundus vult decipi, ergo decipiatur: Visual Communication of Uncertainty
in Election Polls [56.8172499765118]
我々は、今放送と予測におけるバイアスの潜在的な源について論じる。
概念は、誤認識された正確性の問題を軽減するために提示される。
主要なアイデアの1つは、パーティーシェアではなくイベントの確率を使うことである。
論文 参考訳(メタデータ) (2021-04-28T07:02:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。