VDPI: Video Deblurring with Pseudo-inverse Modeling
- URL: http://arxiv.org/abs/2409.00777v1
- Date: Sun, 1 Sep 2024 16:44:21 GMT
- Title: VDPI: Video Deblurring with Pseudo-inverse Modeling
- Authors: Zhihao Huang, Santiago Lopez-Tapia, Aggelos K. Katsaggelos,
- Abstract summary: Video deblurring is a challenging task that aims to recover sharp sequences from blur and noisy observations.
Image-formation model plays a crucial role in traditional model-based methods, constraining the possible solutions.
This paper proposes introducing knowledge of the image-formation model into a deep learning network by using the pseudo-inverse of the blur.
- Score: 8.91065618315995
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Video deblurring is a challenging task that aims to recover sharp sequences from blur and noisy observations. The image-formation model plays a crucial role in traditional model-based methods, constraining the possible solutions. However, this is only the case for some deep learning-based methods. Despite deep-learning models achieving better results, traditional model-based methods remain widely popular due to their flexibility. An increasing number of scholars combine the two to achieve better deblurring performance. This paper proposes introducing knowledge of the image-formation model into a deep learning network by using the pseudo-inverse of the blur. We use a deep network to fit the blurring and estimate pseudo-inverse. Then, we use this estimation, combined with a variational deep-learning network, to deblur the video sequence. Notably, our experimental results demonstrate that such modifications can significantly improve the performance of deep learning models for video deblurring. Furthermore, our experiments on different datasets achieved notable performance improvements, proving that our proposed method can generalize to different scenarios and cameras.
Related papers
- ExposureDiffusion: Learning to Expose for Low-light Image Enhancement [87.08496758469835]
This work addresses the issue by seamlessly integrating a diffusion model with a physics-based exposure model.
Our method obtains significantly improved performance and reduced inference time compared with vanilla diffusion models.
The proposed framework can work with both real-paired datasets, SOTA noise models, and different backbone networks.
arXiv Detail & Related papers (2023-07-15T04:48:35Z) - Improving Depression estimation from facial videos with face alignment,
training optimization and scheduling [0.3441021278275805]
We propose two models based on ResNet-50 that use only static spatial information by using two specific face alignment methods.
Our experiments on benchmark datasets obtain similar results to sophisticated-temporal models for single streams or video, while the score-level fusion of two different streams outperforms state-of-the-art methods.
arXiv Detail & Related papers (2022-12-13T06:46:38Z) - Rethinking Pareto Frontier for Performance Evaluation of Deep Neural
Networks [2.167843405313757]
We re-define the efficiency measure using a multi-objective optimization.
We combine competing variables with nature simultaneously in a single relative efficiency measure.
This allows to rank deep models that run efficiently on different computing hardware, and combines inference efficiency with training efficiency objectively.
arXiv Detail & Related papers (2022-02-18T15:58:17Z) - SIR: Self-supervised Image Rectification via Seeing the Same Scene from
Multiple Different Lenses [82.56853587380168]
We propose a novel self-supervised image rectification (SIR) method based on an important insight that the rectified results of distorted images of the same scene from different lens should be the same.
We leverage a differentiable warping module to generate the rectified images and re-distorted images from the distortion parameters.
Our method achieves comparable or even better performance than the supervised baseline method and representative state-of-the-art methods.
arXiv Detail & Related papers (2020-11-30T08:23:25Z) - Wide-angle Image Rectification: A Survey [86.36118799330802]
wide-angle images contain distortions that violate the assumptions underlying pinhole camera models.
Image rectification, which aims to correct these distortions, can solve these problems.
We present a detailed description and discussion of the camera models used in different approaches.
Next, we review both traditional geometry-based image rectification methods and deep learning-based methods.
arXiv Detail & Related papers (2020-10-30T17:28:40Z) - Deep Keypoint-Based Camera Pose Estimation with Geometric Constraints [80.60538408386016]
Estimating relative camera poses from consecutive frames is a fundamental problem in visual odometry.
We propose an end-to-end trainable framework consisting of learnable modules for detection, feature extraction, matching and outlier rejection.
arXiv Detail & Related papers (2020-07-29T21:41:31Z) - Incorporating Reinforced Adversarial Learning in Autoregressive Image
Generation [39.55651747758391]
We propose to use Reinforced Adversarial Learning (RAL) based on policy gradient optimization for autoregressive models.
RAL also empowers the collaboration between different modules of the VQ-VAE framework.
The proposed method achieves state-of-the-art results on Celeba for 64 $times$ 64 image resolution.
arXiv Detail & Related papers (2020-07-20T08:10:07Z) - Deblurring by Realistic Blurring [110.54173799114785]
We propose a new method which combines two GAN models, i.e., a learning-to-blurr GAN (BGAN) and learning-to-DeBlur GAN (DBGAN)
The first model, BGAN, learns how to blur sharp images with unpaired sharp and blurry image sets, and then guides the second model, DBGAN, to learn how to correctly deblur such images.
As an additional contribution, this paper also introduces a Real-World Blurred Image (RWBI) dataset including diverse blurry images.
arXiv Detail & Related papers (2020-04-04T05:25:15Z) - Deep Unfolding Network for Image Super-Resolution [159.50726840791697]
This paper proposes an end-to-end trainable unfolding network which leverages both learning-based methods and model-based methods.
The proposed network inherits the flexibility of model-based methods to super-resolve blurry, noisy images for different scale factors via a single model.
arXiv Detail & Related papers (2020-03-23T17:55:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.