論文の概要: PIETRA: Physics-Informed Evidential Learning for Traversing Out-of-Distribution Terrain
- arxiv url: http://arxiv.org/abs/2409.03005v1
- Date: Wed, 4 Sep 2024 18:01:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-07 00:59:44.104317
- Title: PIETRA: Physics-Informed Evidential Learning for Traversing Out-of-Distribution Terrain
- Title(参考訳): PIETRA:物理インフォームド・エビデンシャル・ラーニング
- Authors: Xiaoyi Cai, James Queeney, Tong Xu, Aniket Datar, Chenhui Pan, Max Miller, Ashton Flather, Philip R. Osteen, Nicholas Roy, Xuesu Xiao, Jonathan P. How,
- Abstract要約: 物理インフォームド・エビデンシャル・トラバーサビリティ(英: Physics-Informed Evidential Traversability、略称:PIETRA)は、物理の先行性を直接、明らかなニューラルネットワークの数学的定式化に統合する自己指導型学習フレームワークである。
我々の明らかなネットワークは、学習と物理に基づくアウト・オブ・ディストリビューション・インプットの予測をシームレスに遷移させる。
PIETRAは、大きな分散シフトのある環境における学習精度とナビゲーション性能の両方を改善している。
- 参考スコア(独自算出の注目度): 35.21102019590834
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Self-supervised learning is a powerful approach for developing traversability models for off-road navigation, but these models often struggle with inputs unseen during training. Existing methods utilize techniques like evidential deep learning to quantify model uncertainty, helping to identify and avoid out-of-distribution terrain. However, always avoiding out-of-distribution terrain can be overly conservative, e.g., when novel terrain can be effectively analyzed using a physics-based model. To overcome this challenge, we introduce Physics-Informed Evidential Traversability (PIETRA), a self-supervised learning framework that integrates physics priors directly into the mathematical formulation of evidential neural networks and introduces physics knowledge implicitly through an uncertainty-aware, physics-informed training loss. Our evidential network seamlessly transitions between learned and physics-based predictions for out-of-distribution inputs. Additionally, the physics-informed loss regularizes the learned model, ensuring better alignment with the physics model. Extensive simulations and hardware experiments demonstrate that PIETRA improves both learning accuracy and navigation performance in environments with significant distribution shifts.
- Abstract(参考訳): 自己教師付き学習は、オフロードナビゲーションのためのトラバーサビリティモデルを開発するための強力なアプローチである。
既存の手法では、明らかな深層学習のような手法を用いて、モデルの不確実性を定量化し、分布外の地形を特定して回避する。
しかし、物理モデルを用いて新しい地形を効果的に解析できる場合、常に分布外の地形は過度に保守的である。
この課題を克服するために、我々は、物理の先行性を明らかなニューラルネットワークの数学的定式化に直接統合する自己教師型学習フレームワークであるPIETRAを導入し、不確実性を認識した物理インフォームドトレーニング損失を通じて暗黙的に物理知識を導入する。
我々の明らかなネットワークは、学習と物理に基づくアウト・オブ・ディストリビューション・インプットの予測をシームレスに遷移させる。
さらに、物理インフォームド・ロスは学習したモデルを規則化し、物理モデルとの整合性を確保する。
大規模なシミュレーションとハードウェア実験により、PIETRAは、大きな分散シフトのある環境における学習精度とナビゲーション性能の両方を改善することを示した。
関連論文リスト
- A Data-driven Crowd Simulation Framework Integrating Physics-informed Machine Learning with Navigation Potential Fields [15.429885272765363]
本研究では,物理インフォームド・機械学習(PIML)とナビゲーションポテンシャル場を統合した,新しいデータ駆動クラウドシミュレーションフレームワークを提案する。
具体的には,革新的な物理インフォームドS時間グラフ畳み込みネットワーク(PI-STGCN)を,歩行者の移動傾向を予測するデータ駆動モジュールとして設計する。
本フレームワークでは,PI-STGCNにより予測される移動傾向に基づいて,ナビゲーション電位場を動的に計算し,更新する。
論文 参考訳(メタデータ) (2024-10-21T15:56:17Z) - Transport-Embedded Neural Architecture: Redefining the Landscape of physics aware neural models in fluid mechanics [0.0]
二周期領域上で定義される物理問題であるTaylor-Green vortexは、標準物理インフォームドニューラルネットワークと我々のモデルの両方の性能を評価するベンチマークとして使用される。
その結果,標準物理インフォームドニューラルネットワークは解の正確な予測に失敗し,初期条件を時間的に返却するだけでなく,物理の時間的変化をうまく捉えていることがわかった。
論文 参考訳(メタデータ) (2024-10-05T10:32:51Z) - DeepSimHO: Stable Pose Estimation for Hand-Object Interaction via
Physics Simulation [81.11585774044848]
我々は、前方物理シミュレーションと後方勾配近似とニューラルネットワークを組み合わせた新しいディープラーニングパイプラインであるDeepSimHOを紹介する。
提案手法は, 評価の安定性を著しく向上し, テスト時間最適化よりも優れた効率性を実現する。
論文 参考訳(メタデータ) (2023-10-11T05:34:36Z) - Exploring Model Transferability through the Lens of Potential Energy [78.60851825944212]
トランスファーラーニングは、事前訓練されたディープラーニングモデルが広く利用可能であることから、コンピュータビジョンタスクにおいて重要になっている。
既存のトレーニング済みモデルの転送可能性の測定方法は、符号化された静的特徴とタスクラベルの間の統計的相関に依存する。
我々はこれらの課題に対処するために,PEDという物理に着想を得たアプローチを提案する。
論文 参考訳(メタデータ) (2023-08-29T07:15:57Z) - Physics-Guided Adversarial Machine Learning for Aircraft Systems
Simulation [9.978961706999833]
この研究は、物理誘導型逆機械学習(ML)という新しいアプローチを示し、モデルの物理一貫性に対する信頼性を向上させる。
2つの航空機システムの性能モデルに対する実証的な評価は、我々の敵MLアプローチの有効性を示している。
論文 参考訳(メタデータ) (2022-09-07T19:23:45Z) - STDEN: Towards Physics-Guided Neural Networks for Traffic Flow
Prediction [31.49270000605409]
物理原理とデータ駆動モデルの統合の欠如は、この分野の開発を制限する重要な理由である。
本稿では,交通流力学の物理機構を深層ニューラルネットワークの枠組みに組み込む,時空間微分方程式ネットワーク(STDEN)という物理誘導型ディープラーニングモデルを提案する。
北京の3つの実世界の交通データセットの実験では、我々のモデルは最先端のベースラインをかなり上回っている。
論文 参考訳(メタデータ) (2022-09-01T04:58:18Z) - Human Trajectory Prediction via Neural Social Physics [63.62824628085961]
軌道予測は多くの分野において広く研究され、多くのモデルベースおよびモデルフリーな手法が研究されている。
ニューラル微分方程式モデルに基づく新しい手法を提案する。
我々の新しいモデル(ニューラル社会物理学またはNSP)は、学習可能なパラメータを持つ明示的な物理モデルを使用するディープニューラルネットワークである。
論文 参考訳(メタデータ) (2022-07-21T12:11:18Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
クオーロタのシステムダイナミクスを正確にモデル化することは、アジャイル、安全、安定したナビゲーションを保証する上で非常に重要です。
本稿では,ロボットの経験から,四重項系の力学を純粋に学習するための新しい物理インスパイアされた時間畳み込みネットワーク(PI-TCN)を提案する。
提案手法は,スパース時間的畳み込みと高密度フィードフォワード接続の表現力を組み合わせて,正確なシステム予測を行う。
論文 参考訳(メタデータ) (2022-06-07T13:51:35Z) - Hessian-based toolbox for reliable and interpretable machine learning in
physics [58.720142291102135]
本稿では,モデルアーキテクチャの解釈可能性と信頼性,外挿を行うためのツールボックスを提案する。
与えられたテストポイントでの予測に対する入力データの影響、モデル予測の不確実性の推定、およびモデル予測の不可知スコアを提供する。
我々の研究は、物理学やより一般的には科学に適用されたMLにおける解釈可能性と信頼性の方法の体系的利用への道を開く。
論文 参考訳(メタデータ) (2021-08-04T16:32:59Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
我々は、不完全物理モデルの深部生成モデルへの統合に焦点を当てる。
本稿では,潜在空間の一部が物理によって基底づけられたVAEアーキテクチャを提案する。
合成および実世界のデータセットの集合に対して生成的性能改善を示す。
論文 参考訳(メタデータ) (2021-02-25T20:28:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。