論文の概要: A Data-driven Crowd Simulation Framework Integrating Physics-informed Machine Learning with Navigation Potential Fields
- arxiv url: http://arxiv.org/abs/2410.16132v1
- Date: Mon, 21 Oct 2024 15:56:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-22 13:12:33.068970
- Title: A Data-driven Crowd Simulation Framework Integrating Physics-informed Machine Learning with Navigation Potential Fields
- Title(参考訳): 物理インフォームド機械学習とナビゲーションポテンシャル場を統合したデータ駆動クラウドシミュレーションフレームワーク
- Authors: Runkang Guo, Bin Chen, Qi Zhang, Yong Zhao, Xiao Wang, Zhengqiu Zhu,
- Abstract要約: 本研究では,物理インフォームド・機械学習(PIML)とナビゲーションポテンシャル場を統合した,新しいデータ駆動クラウドシミュレーションフレームワークを提案する。
具体的には,革新的な物理インフォームドS時間グラフ畳み込みネットワーク(PI-STGCN)を,歩行者の移動傾向を予測するデータ駆動モジュールとして設計する。
本フレームワークでは,PI-STGCNにより予測される移動傾向に基づいて,ナビゲーション電位場を動的に計算し,更新する。
- 参考スコア(独自算出の注目度): 15.429885272765363
- License:
- Abstract: Traditional rule-based physical models are limited by their reliance on singular physical formulas and parameters, making it difficult to effectively tackle the intricate tasks associated with crowd simulation. Recent research has introduced deep learning methods to tackle these issues, but most current approaches focus primarily on generating pedestrian trajectories, often lacking interpretability and failing to provide real-time dynamic simulations.To address the aforementioned issues, we propose a novel data-driven crowd simulation framework that integrates Physics-informed Machine Learning (PIML) with navigation potential fields. Our approach leverages the strengths of both physical models and PIML. Specifically, we design an innovative Physics-informed Spatio-temporal Graph Convolutional Network (PI-STGCN) as a data-driven module to predict pedestrian movement trends based on crowd spatio-temporal data. Additionally, we construct a physical model of navigation potential fields based on flow field theory to guide pedestrian movements, thereby reinforcing physical constraints during the simulation. In our framework, navigation potential fields are dynamically computed and updated based on the movement trends predicted by the PI-STGCN, while the updated crowd dynamics, guided by these fields, subsequently feed back into the PI-STGCN. Comparative experiments on two publicly available large-scale real-world datasets across five scenes demonstrate that our proposed framework outperforms existing rule-based methods in accuracy and fidelity. The similarity between simulated and actual pedestrian trajectories increases by 10.8%, while the average error is reduced by 4%. Moreover, our framework exhibits greater adaptability and better interpretability compared to methods that rely solely on deep learning for trajectory generation.
- Abstract(参考訳): 従来の規則に基づく物理モデルは、特異な物理式やパラメータに依存しているため、群衆シミュレーションに関連する複雑なタスクに効果的に取り組むことは困難である。
近年,これらの問題に対処するディープラーニング手法が提案されているが,近年のアプローチは主に歩行者軌道の生成に重点を置いており,解釈可能性の欠如やリアルタイムな動的シミュレーションの提供に失敗することが多く,上記の問題に対処するために,物理情報処理機械学習(PIML)とナビゲーションポテンシャル場を統合する新しいデータ駆動群シミュレーションフレームワークを提案する。
我々のアプローチは、物理モデルとPIMLの両方の長所を活用する。
具体的には、観衆の時空間データに基づいて歩行者の動きの傾向を予測するためのデータ駆動モジュールとして、革新的な物理インフォームド時空間グラフ畳み込みネットワーク(PI-STGCN)を設計する。
さらに,歩行者の動きを誘導するフロー場理論に基づくナビゲーション電位場の物理モデルを構築し,シミュレーション中の物理的な制約を補強する。
本フレームワークでは,PI-STGCNにより予測される移動傾向に基づいて,ナビゲーション電位場を動的に計算し,更新する。
5つの場面で利用可能な2つの大規模な実世界のデータセットの比較実験により、提案するフレームワークは、既存のルールベースの手法よりも正確性と忠実性が高いことを示した。
シミュレーションと実際の歩行者軌道の類似性は10.8%増加し、平均誤差は4%減少する。
さらに,本フレームワークは,トラジェクトリ生成のためのディープラーニングのみに依存する手法と比較して,適応性と解釈性が向上している。
関連論文リスト
- Fine-Tuning Hybrid Physics-Informed Neural Networks for Vehicle Dynamics Model Estimation [2.432448600920501]
本稿では、教師付きおよび教師なしの物理インフォームドニューラルネットワーク(PINN)を統合したFTHD法を提案する。
FTHDは、より小さなトレーニングデータセットを使用して、事前トレーニングされたDeep Dynamics Model(DDM)を微調整する。
拡張カルマンフィルタ(EKF)はFTHD内に埋め込まれ、ノイズの多い実世界のデータを効果的に管理し、正確な騒音を確実にする。
その結果, パラメータ推定精度は従来のモデルより大幅に向上し, 既存のモデルよりも優れていた。
論文 参考訳(メタデータ) (2024-09-29T10:33:07Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
都市フロー予測は、バス、タクシー、ライド駆動モデルといった交通サービスのスループットを見積もる、微妙な時間的モデリングである。
最近の予測解は、物理学誘導機械学習(PGML)の概念による改善をもたらす。
我々は、PN(atized Physics-guided Network)を開発し、P-GASR(Physical-guided Active Sample Reweighting)を提案する。
論文 参考訳(メタデータ) (2024-07-18T15:44:23Z) - Adapting Physics-Informed Neural Networks To Optimize ODEs in Mosquito Population Dynamics [0.019972837513980313]
本稿では,ODE システムの前方および逆問題に対していくつかの改良を加えた PINN フレームワークを提案する。
この枠組みは、蚊の常微分方程式によって生じる勾配不均衡と硬い問題に取り組む。
予備的な結果は、物理インフォームド機械学習が生態システムの研究を前進させる大きな可能性を秘めていることを示している。
論文 参考訳(メタデータ) (2024-06-07T17:40:38Z) - Bridging the Sim-to-Real Gap with Bayesian Inference [53.61496586090384]
データからロボットダイナミクスを学習するためのSIM-FSVGDを提案する。
我々は、ニューラルネットワークモデルのトレーニングを規則化するために、低忠実度物理プリエンスを使用します。
高性能RCレースカーシステムにおけるSIM-to-realギャップのブリッジ化におけるSIM-FSVGDの有効性を実証する。
論文 参考訳(メタデータ) (2024-03-25T11:29:32Z) - STDEN: Towards Physics-Guided Neural Networks for Traffic Flow
Prediction [31.49270000605409]
物理原理とデータ駆動モデルの統合の欠如は、この分野の開発を制限する重要な理由である。
本稿では,交通流力学の物理機構を深層ニューラルネットワークの枠組みに組み込む,時空間微分方程式ネットワーク(STDEN)という物理誘導型ディープラーニングモデルを提案する。
北京の3つの実世界の交通データセットの実験では、我々のモデルは最先端のベースラインをかなり上回っている。
論文 参考訳(メタデータ) (2022-09-01T04:58:18Z) - Human Trajectory Prediction via Neural Social Physics [63.62824628085961]
軌道予測は多くの分野において広く研究され、多くのモデルベースおよびモデルフリーな手法が研究されている。
ニューラル微分方程式モデルに基づく新しい手法を提案する。
我々の新しいモデル(ニューラル社会物理学またはNSP)は、学習可能なパラメータを持つ明示的な物理モデルを使用するディープニューラルネットワークである。
論文 参考訳(メタデータ) (2022-07-21T12:11:18Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
クオーロタのシステムダイナミクスを正確にモデル化することは、アジャイル、安全、安定したナビゲーションを保証する上で非常に重要です。
本稿では,ロボットの経験から,四重項系の力学を純粋に学習するための新しい物理インスパイアされた時間畳み込みネットワーク(PI-TCN)を提案する。
提案手法は,スパース時間的畳み込みと高密度フィードフォワード接続の表現力を組み合わせて,正確なシステム予測を行う。
論文 参考訳(メタデータ) (2022-06-07T13:51:35Z) - Gradient-Based Trajectory Optimization With Learned Dynamics [80.41791191022139]
データからシステムの微分可能なダイナミクスモデルを学習するために、機械学習技術を使用します。
ニューラルネットワークは、大規模な時間的地平線に対して、非常に非線形な振る舞いを正確にモデル化できることが示される。
ハードウェア実験において、学習したモデルがSpotとRadio- controlled (RC)の両方の複雑な力学を表現できることを実証した。
論文 参考訳(メタデータ) (2022-04-09T22:07:34Z) - Transformer Inertial Poser: Attention-based Real-time Human Motion
Reconstruction from Sparse IMUs [79.72586714047199]
本研究では,6つのIMUセンサからリアルタイムに全体動作を再構築する,注意に基づく深層学習手法を提案する。
提案手法は, 実装が簡単で, 小型でありながら, 定量的かつ質的に新しい結果が得られる。
論文 参考訳(メタデータ) (2022-03-29T16:24:52Z) - Physics-Coupled Spatio-Temporal Active Learning for Dynamical Systems [15.923190628643681]
主な課題の1つは、認識されたデータストリームを生成する根本原因を推測することである。
機械学習ベースの予測モデルの成功は、モデルトレーニングに大量の注釈付きデータを必要とする。
提案するST-PCNNは, 実世界のデータセットと実世界のデータセットの両方において, 極めて少ないインスタンスで最適精度に収束することを示した。
論文 参考訳(メタデータ) (2021-08-11T18:05:55Z) - Incorporating Kinematic Wave Theory into a Deep Learning Method for
High-Resolution Traffic Speed Estimation [3.0969191504482243]
本研究では, 波動に基づく深部畳み込みニューラルネットワーク(Deep CNN)を提案し, スパースプローブ車両軌道から高分解能交通速度のダイナミクスを推定する。
我々は,既存の学習に基づく推定手法の堅牢性を改善するために,運動波理論の原理を取り入れるための2つの重要なアプローチを導入する。
論文 参考訳(メタデータ) (2021-02-04T21:51:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。