論文の概要: Burgers' pinns with implicit euler transfer learning
- arxiv url: http://arxiv.org/abs/2310.15343v1
- Date: Mon, 23 Oct 2023 20:15:45 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-25 21:42:36.526404
- Title: Burgers' pinns with implicit euler transfer learning
- Title(参考訳): 暗黙のオイラー転校学習を伴うハンバーガーのピン
- Authors: Vit\'oria Biesek and Pedro Henrique de Almeida Konzen
- Abstract要約: バーガーズ方程式は、いくつかの現象の計算モデルにおいて確立されたテストケースである。
本稿では,バーガース方程式を解くために,暗黙のオイラー変換学習手法を用いた物理情報ニューラルネットワーク(PINN)の適用について述べる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Burgers equation is a well-established test case in the computational
modeling of several phenomena such as fluid dynamics, gas dynamics, shock
theory, cosmology, and others. In this work, we present the application of
Physics-Informed Neural Networks (PINNs) with an implicit Euler transfer
learning approach to solve the Burgers equation. The proposed approach consists
in seeking a time-discrete solution by a sequence of Artificial Neural Networks
(ANNs). At each time step, the previous ANN transfers its knowledge to the next
network model, which learns the current time solution by minimizing a loss
function based on the implicit Euler approximation of the Burgers equation. The
approach is tested for two benchmark problems: the first with an exact solution
and the other with an alternative analytical solution. In comparison to the
usual PINN models, the proposed approach has the advantage of requiring smaller
neural network architectures with similar accurate results and potentially
decreasing computational costs.
- Abstract(参考訳): バーガーズ方程式は流体力学、気体力学、衝撃理論、宇宙論などいくつかの現象の計算モデリングにおいて確立されたテストケースである。
本稿では,バーガース方程式を解くために,暗黙のオイラー変換学習手法を用いた物理情報ニューラルネットワーク(PINN)の適用について述べる。
提案されたアプローチは、一連のニューラルネットワーク(anns)による時間的離散解を求めることである。
各時間ステップにおいて、前のANNはその知識を次のネットワークモデルに転送し、バーガーズ方程式の暗黙のオイラー近似に基づいて損失関数を最小化することにより現在の時間解を学習する。
このアプローチは、2つのベンチマーク問題に対してテストされる。1つは厳密なソリューション、もう1つは別の分析ソリューションである。
通常のPINNモデルと比較して、提案手法は、同様の正確な結果と計算コストの削減を伴って、より小さなニューラルネットワークアーキテクチャを必要とするという利点がある。
関連論文リスト
- DiffGrad for Physics-Informed Neural Networks [0.0]
バーガーズ方程式(英: Burgers' equation)は流体力学の基本方程式であり、PINNで広く用いられている。
本稿では,DiffGradをPINNに組み込むことで,バーガースの方程式を解く新しい手法を提案する。
論文 参考訳(メタデータ) (2024-09-05T04:39:35Z) - The Unreasonable Effectiveness of Solving Inverse Problems with Neural Networks [24.766470360665647]
逆問題に対する解を学ぶために訓練されたニューラルネットワークは、トレーニングセット上でも古典よりも優れた解を見つけることができることを示す。
高速な推論のために新しいデータに一般化するのではなく、既知のデータに対するより良い解決策を見つけるためにも使用できる。
論文 参考訳(メタデータ) (2024-08-15T12:38:10Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
本稿では,NeuralStaggerと呼ばれる一般化手法を提案する。
元の学習タスクをいくつかの粗い解像度のサブタスクに分解する。
本稿では,2次元および3次元流体力学シミュレーションにおけるNeuralStaggerの適用例を示す。
論文 参考訳(メタデータ) (2023-02-20T19:36:52Z) - Transfer Learning with Physics-Informed Neural Networks for Efficient
Simulation of Branched Flows [1.1470070927586016]
物理インフォームドニューラルネットワーク(PINN)は微分方程式を解くための有望なアプローチを提供する。
PINNに対して最近開発されたトランスファー学習アプローチを採用し,マルチヘッドモデルを提案する。
提案手法は,スクラッチからトレーニングした標準PINNと比較して,計算速度が大幅に向上することを示す。
論文 参考訳(メタデータ) (2022-11-01T01:50:00Z) - Neural Basis Functions for Accelerating Solutions to High Mach Euler
Equations [63.8376359764052]
ニューラルネットワークを用いた偏微分方程式(PDE)の解法を提案する。
ニューラルネットワークの集合を縮小順序 Proper Orthogonal Decomposition (POD) に回帰する。
これらのネットワークは、所定のPDEのパラメータを取り込み、PDEに還元順序近似を計算する分岐ネットワークと組み合わせて使用される。
論文 参考訳(メタデータ) (2022-08-02T18:27:13Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
我々は,物理インフォームドニューラルネットワークのトレーニングを著しく高速化する新しい手法を開発した。
特に、ガウス滑らか化モデルによりPDE解をパラメータ化し、スタインの恒等性から導かれる2階微分がバックプロパゲーションなしで効率的に計算可能であることを示す。
実験の結果,提案手法は通常のPINN訓練に比べて2桁の精度で競合誤差を実現できることがわかった。
論文 参考訳(メタデータ) (2022-02-18T18:07:54Z) - Training Feedback Spiking Neural Networks by Implicit Differentiation on
the Equilibrium State [66.2457134675891]
スパイキングニューラルネットワーク(英: Spiking Neural Network、SNN)は、ニューロモルフィックハードウェア上でエネルギー効率の高い実装を可能にする脳にインスパイアされたモデルである。
既存のほとんどの手法は、人工ニューラルネットワークのバックプロパゲーションフレームワークとフィードフォワードアーキテクチャを模倣している。
本稿では,フォワード計算の正逆性に依存しない新しいトレーニング手法を提案する。
論文 参考訳(メタデータ) (2021-09-29T07:46:54Z) - Physics-Informed Neural Network Method for Solving One-Dimensional
Advection Equation Using PyTorch [0.0]
PINNのアプローチは、最適化の強い制約としてPDEを尊重しながらニューラルネットワークのトレーニングを可能にします。
標準的な小規模循環シミュレーションでは、従来のアプローチは乱流拡散モデルの効果とほぼ同じ大きさの擬似拡散効果を組み込むことが示されている。
テストされた全てのスキームのうち、ピンズ近似のみが結果を正確に予測した。
論文 参考訳(メタデータ) (2021-03-15T05:39:17Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。