ScreenMark: Watermarking Arbitrary Visual Content on Screen
- URL: http://arxiv.org/abs/2409.03487v2
- Date: Fri, 13 Sep 2024 03:03:16 GMT
- Title: ScreenMark: Watermarking Arbitrary Visual Content on Screen
- Authors: Xiujian Liang, Gaozhi Liu, Yichao Si, Xiaoxiao Hu, Zhenxing Qian, Xinpeng Zhang,
- Abstract summary: ScreenMark is a robust and practical watermarking method designed specifically for arbitrary Visual Screen Content protection.
To validate the effectiveness of ScreenMark, we compiled a dataset comprising 100,000 screenshots from various devices and resolutions.
- Score: 26.638743938233496
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Digital watermarking has demonstrated its effectiveness in protecting multimedia content. However, existing watermarking are predominantly tailored for specific media types, rendering them less effective for the protection of content displayed on computer screens, which is often multimodal and dynamic. Visual Screen Content (VSC), is particularly susceptible to theft and leakage via screenshots, a vulnerability that current watermarking methods fail to adequately address. To tackle these challenges, we propose ScreenMark, a robust and practical watermarking method designed specifically for arbitrary VSC protection. ScreenMark utilizes a three-stage progressive watermarking framework. Initially, inspired by diffusion principles, we initialize the mutual transformation between regular watermark information and irregular watermark patterns. Subsequently, these patterns are integrated with screen content using a pre-multiplication alpha blending technique, supported by a pre-trained screen decoder for accurate watermark retrieval. The progressively complex distorter enhances the robustness of the watermark in real-world screenshot scenarios. Finally, the model undergoes fine-tuning guided by a joint-level distorter to ensure optimal performance. To validate the effectiveness of ScreenMark, we compiled a dataset comprising 100,000 screenshots from various devices and resolutions. Extensive experiments across different datasets confirm the method's superior robustness, imperceptibility, and practical applicability.
Related papers
- Robust Watermarking Using Generative Priors Against Image Editing: From Benchmarking to Advances [13.746887960091112]
Large-scale text-to-image models can distort embedded watermarks during editing, posing challenges to copyright protection.
We introduce W-Bench, the first comprehensive benchmark designed to evaluate the robustness of watermarking methods.
We propose VINE, a watermarking method that significantly enhances robustness against various image editing techniques.
arXiv Detail & Related papers (2024-10-24T14:28:32Z) - Safe-SD: Safe and Traceable Stable Diffusion with Text Prompt Trigger for Invisible Generative Watermarking [20.320229647850017]
Stable diffusion (SD) models have typically flourished in the field of image synthesis and personalized editing.
The exposure of AI-created content on public platforms could raise both legal and ethical risks.
In this work, we propose a Safe and high-traceable Stable Diffusion framework (namely SafeSD) to adaptive implant the watermarks into the imperceptible structure.
arXiv Detail & Related papers (2024-07-18T05:53:17Z) - Certifiably Robust Image Watermark [57.546016845801134]
Generative AI raises many societal concerns such as boosting disinformation and propaganda campaigns.
Watermarking AI-generated content is a key technology to address these concerns.
We propose the first image watermarks with certified robustness guarantees against removal and forgery attacks.
arXiv Detail & Related papers (2024-07-04T17:56:04Z) - RAW: A Robust and Agile Plug-and-Play Watermark Framework for AI-Generated Images with Provable Guarantees [33.61946642460661]
This paper introduces a robust and agile watermark detection framework, dubbed as RAW.
We employ a classifier that is jointly trained with the watermark to detect the presence of the watermark.
We show that the framework provides provable guarantees regarding the false positive rate for misclassifying a watermarked image.
arXiv Detail & Related papers (2024-01-23T22:00:49Z) - FT-Shield: A Watermark Against Unauthorized Fine-tuning in Text-to-Image Diffusion Models [64.89896692649589]
We propose FT-Shield, a watermarking solution tailored for the fine-tuning of text-to-image diffusion models.
FT-Shield addresses copyright protection challenges by designing new watermark generation and detection strategies.
arXiv Detail & Related papers (2023-10-03T19:50:08Z) - Catch You Everything Everywhere: Guarding Textual Inversion via Concept Watermarking [67.60174799881597]
We propose the novel concept watermarking, where watermark information is embedded into the target concept and then extracted from generated images based on the watermarked concept.
In practice, the concept owner can upload his concept with different watermarks (ie, serial numbers) to the platform, and the platform allocates different users with different serial numbers for subsequent tracing and forensics.
arXiv Detail & Related papers (2023-09-12T03:33:13Z) - T2IW: Joint Text to Image & Watermark Generation [74.20148555503127]
We introduce a novel task for the joint generation of text to image and watermark (T2IW)
This T2IW scheme ensures minimal damage to image quality when generating a compound image by forcing the semantic feature and the watermark signal to be compatible in pixels.
We demonstrate remarkable achievements in image quality, watermark invisibility, and watermark robustness, supported by our proposed set of evaluation metrics.
arXiv Detail & Related papers (2023-09-07T16:12:06Z) - Docmarking: Real-Time Screen-Cam Robust Document Image Watermarking [97.77394585669562]
Proposed approach does not try to prevent leak in the first place but rather aims to determine source of the leak.
Method works by applying on the screen a unique identifying watermark as semi-transparent image.
Watermark image is static and stays on the screen all the time thus watermark present on every captured photograph of the screen.
arXiv Detail & Related papers (2023-04-25T09:32:11Z) - Adaptive Blind Watermarking Using Psychovisual Image Features [8.75217589103206]
This paper proposes an adaptive method that determines the strength of the watermark embedding in different parts of the cover image.
Experimental results also show that the proposed method can effectively reconstruct the embedded payload in different kinds of common watermarking attacks.
arXiv Detail & Related papers (2022-12-25T06:33:36Z) - Watermarking Images in Self-Supervised Latent Spaces [75.99287942537138]
We revisit watermarking techniques based on pre-trained deep networks, in the light of self-supervised approaches.
We present a way to embed both marks and binary messages into their latent spaces, leveraging data augmentation at marking time.
arXiv Detail & Related papers (2021-12-17T15:52:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.