論文の概要: Exploratory Visual Analysis for Increasing Data Readiness in Artificial Intelligence Projects
- arxiv url: http://arxiv.org/abs/2409.03805v1
- Date: Thu, 5 Sep 2024 09:57:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-09 17:50:10.774125
- Title: Exploratory Visual Analysis for Increasing Data Readiness in Artificial Intelligence Projects
- Title(参考訳): 人工知能プロジェクトにおけるデータ準備性向上のための探索的ビジュアル分析
- Authors: Mattias Tiger, Daniel Jakobsson, Anders Ynnerman, Fredrik Heintz, Daniel Jönsson,
- Abstract要約: 我々は,データ準備性の側面と異なるデータタイプに適した視覚分析手法のマッピングに貢献する。
マッピングに加えて、データ準備性の概念を拡張して、タスクとソリューションの側面をよりよく考慮します。
我々は、提示された視覚分析技術を用いて、将来の人工知能プロジェクトを支援し、データ準備レベルを上げる経験について報告する。
- 参考スコア(独自算出の注目度): 7.982715506261976
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present experiences and lessons learned from increasing data readiness of heterogeneous data for artificial intelligence projects using visual analysis methods. Increasing the data readiness level involves understanding both the data as well as the context in which it is used, which are challenges well suitable to visual analysis. For this purpose, we contribute a mapping between data readiness aspects and visual analysis techniques suitable for different data types. We use the defined mapping to increase data readiness levels in use cases involving time-varying data, including numerical, categorical, and text. In addition to the mapping, we extend the data readiness concept to better take aspects of the task and solution into account and explicitly address distribution shifts during data collection time. We report on our experiences in using the presented visual analysis techniques to aid future artificial intelligence projects in raising the data readiness level.
- Abstract(参考訳): 視覚分析手法を用いて、人工知能プロジェクトにおける異種データの可読性向上から学んだ経験と教訓を提示する。
データ準備度レベルを高めるには、データだけでなく、その使用状況も理解する必要がある。
本研究の目的は,データ準備性面と異なるデータ型に適した視覚解析手法のマッピングに貢献することである。
定義されたマッピングを用いて、数値、分類、テキストを含む時間変化データを含むユースケースにおいて、データの可読度を向上する。
マッピングに加えて、データ準備性の概念を拡張して、タスクとソリューションの側面をよりよく考慮し、データ収集期間中の分散シフトに明示的に対処します。
我々は、提示された視覚分析技術を用いて、将来の人工知能プロジェクトを支援し、データ準備レベルを上げる経験について報告する。
関連論文リスト
- Web-Scale Visual Entity Recognition: An LLM-Driven Data Approach [56.55633052479446]
Webスケールのビジュアルエンティティ認識は、クリーンで大規模なトレーニングデータがないため、重大な課題を呈している。
本稿では,ラベル検証,メタデータ生成,合理性説明に多モーダル大言語モデル(LLM)を活用することによって,そのようなデータセットをキュレートする新しい手法を提案する。
実験により、この自動キュレートされたデータに基づいてトレーニングされたモデルは、Webスケールの視覚的エンティティ認識タスクで最先端のパフォーマンスを達成することが示された。
論文 参考訳(メタデータ) (2024-10-31T06:55:24Z) - Data Analysis in the Era of Generative AI [56.44807642944589]
本稿では,AIを活用したデータ分析ツールの可能性について考察する。
我々は、大規模言語とマルチモーダルモデルの出現が、データ分析ワークフローの様々な段階を強化する新しい機会を提供する方法について検討する。
次に、直感的なインタラクションを促進し、ユーザ信頼を構築し、AI支援分析ワークフローを複数のアプリにわたって合理化するための、人間中心の設計原則を調べます。
論文 参考訳(メタデータ) (2024-09-27T06:31:03Z) - PUB: Plot Understanding Benchmark and Dataset for Evaluating Large Language Models on Synthetic Visual Data Interpretation [2.1184929769291294]
本稿では,データ視覚化における大規模言語モデルの習熟度を評価するために設計された,新しい合成データセットを提案する。
我々のデータセットは、制御されたパラメータを使って生成され、潜在的な現実世界シナリオの包括的カバレッジが保証されます。
我々は、画像中の視覚データに関連する質問を多モーダルテキストプロンプトを用いて、いくつかの最先端モデルをベンチマークする。
論文 参考訳(メタデータ) (2024-09-04T11:19:17Z) - A Comprehensive Survey on Data Augmentation [55.355273602421384]
データ拡張(Data augmentation)は、既存のデータサンプルを操作することによって高品質な人工データを生成する技術である。
既存の文献調査では、特定のモダリティデータにのみ焦点が当てられている。
本稿では,異なる共通データモダリティのためのデータ拡張技術を含む,より啓蒙的な分類法を提案する。
論文 参考訳(メタデータ) (2024-05-15T11:58:08Z) - Navigating Dataset Documentations in AI: A Large-Scale Analysis of
Dataset Cards on Hugging Face [46.60562029098208]
私たちはHugging Faceで7,433のデータセットドキュメントを分析します。
本研究は,大規模データサイエンス分析によるデータセットの文書化に関するユニークな視点を提供する。
論文 参考訳(メタデータ) (2024-01-24T21:47:13Z) - Towards Explainable Artificial Intelligence (XAI): A Data Mining
Perspective [35.620874971064765]
この研究は、データ収集、処理、分析が説明可能なAI(XAI)にどのように貢献するかを「データ中心」の視点で検証する。
我々は,既存の研究を,深層モデルの解釈,トレーニングデータの影響,ドメイン知識の洞察の3つのカテゴリに分類する。
具体的には、XAIの方法論を、モダリティをまたいだデータのトレーニングおよびテストに関するデータマイニング操作に蒸留する。
論文 参考訳(メタデータ) (2024-01-09T06:27:09Z) - Capture the Flag: Uncovering Data Insights with Large Language Models [90.47038584812925]
本研究では,Large Language Models (LLMs) を用いてデータの洞察の発見を自動化する可能性について検討する。
そこで本稿では,データセット内の意味的かつ関連する情報(フラグ)を識別する能力を測定するために,フラグを捕捉する原理に基づく新しい評価手法を提案する。
論文 参考訳(メタデータ) (2023-12-21T14:20:06Z) - Demonstration of InsightPilot: An LLM-Empowered Automated Data
Exploration System [48.62158108517576]
本稿では,データ探索プロセスの簡略化を目的とした自動データ探索システムであるInsightPilotを紹介する。
InsightPilotは、理解、要約、説明などの適切な分析意図を自動的に選択する。
簡単に言うと、IQueryはデータ分析操作の抽象化と自動化であり、データアナリストのアプローチを模倣しています。
論文 参考訳(メタデータ) (2023-04-02T07:27:49Z) - TRoVE: Transforming Road Scene Datasets into Photorealistic Virtual
Environments [84.6017003787244]
本研究では、シミュレーションデータセットに存在する困難とドメインギャップに対処する合成データ生成パイプラインを提案する。
既存のデータセットからアノテーションや視覚的手がかりを利用すれば、自動マルチモーダルデータ生成が容易になることを示す。
論文 参考訳(メタデータ) (2022-08-16T20:46:08Z) - Visualization Techniques to Enhance Automated Event Extraction [0.0]
このケーススタディでは,NLPを用いたニュース記事から,国家主導による大量殺人の潜在的な引き金を探究する。
可視化は、生データの探索分析から機械学習トレーニング分析、最後に推論後の検証に至るまで、各段階でどのように役立つかを実証する。
論文 参考訳(メタデータ) (2021-06-11T19:24:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。