論文の概要: FEM-based Neural Networks for Solving Incompressible Fluid Flows and Related Inverse Problems
- arxiv url: http://arxiv.org/abs/2409.04067v1
- Date: Fri, 6 Sep 2024 07:17:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-09 16:36:07.806928
- Title: FEM-based Neural Networks for Solving Incompressible Fluid Flows and Related Inverse Problems
- Title(参考訳): 非圧縮性流体の解法のためのFEMベースニューラルネットワークとその逆問題
- Authors: Franziska Griese, Fabian Hoppe, Alexander Rüttgers, Philipp Knechtges,
- Abstract要約: 偏微分方程式で記述された技術システムの数値シミュレーションと最適化は高価である。
この文脈で比較的新しいアプローチは、ニューラルネットワークの優れた近似特性と古典的有限要素法を組み合わせることである。
本稿では, この手法を, サドルポイント問題と非線形流体力学問題に拡張する。
- 参考スコア(独自算出の注目度): 41.94295877935867
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The numerical simulation and optimization of technical systems described by partial differential equations is expensive, especially in multi-query scenarios in which the underlying equations have to be solved for different parameters. A comparatively new approach in this context is to combine the good approximation properties of neural networks (for parameter dependence) with the classical finite element method (for discretization). However, instead of considering the solution mapping of the PDE from the parameter space into the FEM-discretized solution space as a purely data-driven regression problem, so-called physically informed regression problems have proven to be useful. In these, the equation residual is minimized during the training of the neural network, i.e. the neural network "learns" the physics underlying the problem. In this paper, we extend this approach to saddle-point and non-linear fluid dynamics problems, respectively, namely stationary Stokes and stationary Navier-Stokes equations. In particular, we propose a modification of the existing approach: Instead of minimizing the plain vanilla equation residual during training, we minimize the equation residual modified by a preconditioner. By analogy with the linear case, this also improves the condition in the present non-linear case. Our numerical examples demonstrate that this approach significantly reduces the training effort and greatly increases accuracy and generalizability. Finally, we show the application of the resulting parameterized model to a related inverse problem.
- Abstract(参考訳): 偏微分方程式で記述された技術的システムの数値シミュレーションと最適化は高価であり、特に異なるパラメータに対して基礎となる方程式を解かなければならないマルチクエリシナリオにおいてである。
この文脈で比較的新しいアプローチは、ニューラルネットワークのよい近似特性(パラメータ依存)と古典有限要素法(離散化)を組み合わせることである。
しかし、パラメータ空間からFEMに分解された解空間へのPDEの解写像を純粋にデータ駆動回帰問題として考慮する代わりに、いわゆる物理情報レグレッション問題は有用であることが証明されている。
これらにおいて、方程式残差はニューラルネットワークのトレーニング中に最小化される。
本稿では, 定常ストークスと定常ナヴィエ・ストークス方程式のそれぞれを, サドル点と非線形流体力学の問題に拡張する。
特に,訓練中のバニラ方程式の残差を最小限に抑える代わりに,プレコンディショナーによって修正された方程式の残差を最小限に抑える。
線形の場合と類似して、これは現在の非線形の場合の条件も改善する。
数値的な例では、このアプローチはトレーニングの労力を大幅に削減し、精度と一般化可能性を大幅に向上させる。
最後に,パラメータ化モデルの関連する逆問題への適用について述べる。
関連論文リスト
- TSONN: Time-stepping-oriented neural network for solving partial
differential equations [1.9061608251056779]
この研究は、PDE問題を解決するために、タイムステッピング法とディープラーニングを統合する。
擬似タイムステッピング過程の軌跡に従うことにより、モデルトレーニングの収束性を大幅に改善する。
提案手法は,標準のPINNでは解けない多くの問題において,安定したトレーニングと正しい結果が得られることを示す。
論文 参考訳(メタデータ) (2023-10-25T09:19:40Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
本稿では,ハイパースペクトル画像のデコンボリューション問題に対処する新しい手法を提案する。
新しい最適化問題を定式化し、学習可能な正規化器をニューラルネットワークの形で活用する。
導出した反復解法は、Deep Equilibriumフレームワーク内の不動点計算問題として表現される。
論文 参考訳(メタデータ) (2023-06-10T08:25:16Z) - A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
我々は,ネットワークの条件が悪くなるのを防止し,パラメータ数で時間線形に動作するODEベースのIPPソルバを開発した。
このアプローチに基づく現在の手法は2つの重要な問題に悩まされていることを示す。
まず、ODEに従うと、問題の条件付けにおいて制御不能な成長が生じ、最終的に許容できないほど大きな数値誤差が生じる。
論文 参考訳(メタデータ) (2023-04-28T17:28:18Z) - Random Grid Neural Processes for Parametric Partial Differential
Equations [5.244037702157957]
我々はPDEのための空間確率物理の新しいクラスと深部潜伏モデルについて紹介する。
パラメトリックPDEの前方および逆問題を解場のガウス過程モデルの構築につながる方法で解く。
物理情報モデルにノイズのあるデータを原則的に組み込むことで、データの入手可能な問題に対する予測を改善する方法を示す。
論文 参考訳(メタデータ) (2023-01-26T11:30:56Z) - Towards a machine learning pipeline in reduced order modelling for
inverse problems: neural networks for boundary parametrization,
dimensionality reduction and solution manifold approximation [0.0]
逆問題、特に偏微分方程式の文脈では、膨大な計算負荷を必要とする。
ニューラルネットワークを用いた数値パイプラインを用いて,問題の境界条件のパラメータ化を行う。
これは、インレット境界のアドホックなパラメトリゼーションを提供することができ、迅速に最適解に収束する一般的な枠組みに由来する。
論文 参考訳(メタデータ) (2022-10-26T14:53:07Z) - Neural Basis Functions for Accelerating Solutions to High Mach Euler
Equations [63.8376359764052]
ニューラルネットワークを用いた偏微分方程式(PDE)の解法を提案する。
ニューラルネットワークの集合を縮小順序 Proper Orthogonal Decomposition (POD) に回帰する。
これらのネットワークは、所定のPDEのパラメータを取り込み、PDEに還元順序近似を計算する分岐ネットワークと組み合わせて使用される。
論文 参考訳(メタデータ) (2022-08-02T18:27:13Z) - Learning via nonlinear conjugate gradients and depth-varying neural ODEs [5.565364597145568]
ニューラル常微分方程式(NODE)における深度可変パラメータの教師付き再構成の逆問題について考察する。
提案したパラメータ再構成は,コスト関数の最小化による一般一階微分方程式に対して行われる。
感度問題は、トレーニングされたパラメータの摂動下でのネットワーク出力の変化を推定することができる。
論文 参考訳(メタデータ) (2022-02-11T17:00:48Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Physics and Equality Constrained Artificial Neural Networks: Application
to Partial Differential Equations [1.370633147306388]
偏微分方程式(PDE)の解を学ぶために物理インフォームドニューラルネットワーク(PINN)が提案されている。
本稿では,この目的関数の定式化方法が,PINNアプローチにおける厳密な制約の源であることを示す。
本稿では,逆問題と前方問題の両方に対処可能な多目的フレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-30T05:55:35Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。