論文の概要: Coupled Integral PINN for conservation law
- arxiv url: http://arxiv.org/abs/2411.11276v1
- Date: Mon, 18 Nov 2024 04:32:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:26:29.600790
- Title: Coupled Integral PINN for conservation law
- Title(参考訳): 保全法のための結合型積分PINN
- Authors: Yeping Wang, Shihao Yang,
- Abstract要約: The Physics-Informed Neural Network (PINN) は、様々な偏微分方程式を解く革新的な手法である。
本稿では,ニューラルネットワークを用いた積分解方程式の組込みを含む,結合統合型PINN手法を提案する。
- 参考スコア(独自算出の注目度): 1.9720482348156743
- License:
- Abstract: The Physics-Informed Neural Network (PINN) is an innovative approach to solve a diverse array of partial differential equations (PDEs) leveraging the power of neural networks. This is achieved by minimizing the residual loss associated with the explicit physical information, usually coupled with data derived from initial and boundary conditions. However, a challenge arises in the context of nonlinear conservation laws where derivatives are undefined at shocks, leading to solutions that deviate from the true physical phenomena. To solve this issue, the physical solution must be extracted from the weak formulation of the PDE and is typically further bounded by entropy conditions. Within the numerical framework, finite volume methods (FVM) are employed to address conservation laws. These methods resolve the integral form of conservation laws and delineate the shock characteristics. Inspired by the principles underlying FVM, this paper introduces a novel Coupled Integrated PINN methodology that involves fitting the integral solutions of equations using additional neural networks. This technique not only augments the conventional PINN's capability in modeling shock waves, but also eliminates the need for spatial and temporal discretization. As such, it bypasses the complexities of numerical integration and reconstruction associated with non-convex fluxes. Finally, we show that the proposed new Integrated PINN performs well in conservative law and outperforms the vanilla PINN when tackle the challenging shock problems using examples of Burger's equation, Buckley-Leverett Equation and Euler System.
- Abstract(参考訳): The Physics-Informed Neural Network (PINN)は、ニューラルネットワークのパワーを活用する様々な偏微分方程式(PDE)を解く革新的なアプローチである。
これは、明示的な物理情報に関連する残留損失を最小化し、通常、初期および境界条件から導出されたデータと結合することによって達成される。
しかし、非線型保存法則(英語版)の文脈では、微分は衝撃で未定義であり、真の物理現象から逸脱する解をもたらす。
この問題を解決するためには、物理解はPDEの弱い定式化から抽出されなければならず、典型的にはエントロピー条件によってさらに境界づけられる。
数値的な枠組みの中では、有限体積法(FVM)が保存則に対処するために用いられる。
これらの方法で保存法則の積分形式を解き、衝撃特性を規定する。
本稿では、FVMの基礎となる原理に着想を得て、追加のニューラルネットワークを用いて方程式の積分解を適合させる新しい結合統合PINN手法を提案する。
この技術は、従来のPINNの衝撃波モデリング能力を高めるだけでなく、空間的・時間的離散化の必要性を排除している。
そのため、非凸フラックスに関連する数値積分と再構成の複雑さを回避できる。
最後に,提案した統合PINNは保守的法則において良好に機能し,バーガー方程式,Buckley-Leverett方程式,オイラー方程式の例を用いて,難解な衝撃問題に対処する際,バニラPINNよりも優れていることを示す。
関連論文リスト
- Discovery of Quasi-Integrable Equations from traveling-wave data using the Physics-Informed Neural Networks [0.0]
PINNは2+1次元非線形偏微分方程式の渦解の研究に用いられる。
保存法則(cPINN)、初期プロファイルの変形、および識別の解像度を改善するための摩擦アプローチを考察する。
論文 参考訳(メタデータ) (2024-10-23T08:29:13Z) - FEM-based Neural Networks for Solving Incompressible Fluid Flows and Related Inverse Problems [41.94295877935867]
偏微分方程式で記述された技術システムの数値シミュレーションと最適化は高価である。
この文脈で比較的新しいアプローチは、ニューラルネットワークの優れた近似特性と古典的有限要素法を組み合わせることである。
本稿では, この手法を, サドルポイント問題と非線形流体力学問題に拡張する。
論文 参考訳(メタデータ) (2024-09-06T07:17:01Z) - A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
我々は,ネットワークの条件が悪くなるのを防止し,パラメータ数で時間線形に動作するODEベースのIPPソルバを開発した。
このアプローチに基づく現在の手法は2つの重要な問題に悩まされていることを示す。
まず、ODEに従うと、問題の条件付けにおいて制御不能な成長が生じ、最終的に許容できないほど大きな数値誤差が生じる。
論文 参考訳(メタデータ) (2023-04-28T17:28:18Z) - Reduced-PINN: An Integration-Based Physics-Informed Neural Networks for
Stiff ODEs [0.0]
物理インフォームドニューラルネットワーク(PINN)は、最近、前方および逆問題の両方を解決する能力により、多くの注目を集めている。
そこで我々は, PINN の高次積分法を用いて, 硬質化学動力学を解ける新しい PINN アーキテクチャ, Reduced-PINN を提案する。
論文 参考訳(メタデータ) (2022-08-23T09:20:42Z) - Physics-Informed Neural Network Method for Parabolic Differential
Equations with Sharply Perturbed Initial Conditions [68.8204255655161]
急激な摂動初期条件を持つパラボラ問題に対する物理インフォームドニューラルネットワーク(PINN)モデルを開発した。
ADE解の局所的な大きな勾配は(PINNでよく見られる)ラテンハイパーキューブで方程式の残余の高効率なサンプリングを行う。
本稿では,他の方法により選択した量よりも精度の高いPINNソリューションを生成する損失関数における重みの基準を提案する。
論文 参考訳(メタデータ) (2022-08-18T05:00:24Z) - Neural Basis Functions for Accelerating Solutions to High Mach Euler
Equations [63.8376359764052]
ニューラルネットワークを用いた偏微分方程式(PDE)の解法を提案する。
ニューラルネットワークの集合を縮小順序 Proper Orthogonal Decomposition (POD) に回帰する。
これらのネットワークは、所定のPDEのパラメータを取り込み、PDEに還元順序近似を計算する分岐ネットワークと組み合わせて使用される。
論文 参考訳(メタデータ) (2022-08-02T18:27:13Z) - A mixed formulation for physics-informed neural networks as a potential
solver for engineering problems in heterogeneous domains: comparison with
finite element method [0.0]
物理インフォームドニューラルネットワーク(PINN)は、与えられた境界値問題の解を見つけることができる。
工学的問題における既存のPINNの性能を高めるために,有限要素法(FEM)からいくつかのアイデアを取り入れた。
論文 参考訳(メタデータ) (2022-06-27T08:18:08Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Physics-Informed Neural Operator for Learning Partial Differential
Equations [55.406540167010014]
PINOは、演算子を学ぶために異なる解像度でデータとPDE制約を組み込んだ最初のハイブリッドアプローチである。
結果の PINO モデルは、多くの人気のある PDE ファミリの基底構造解演算子を正確に近似することができる。
論文 参考訳(メタデータ) (2021-11-06T03:41:34Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
ODE/PDEを解決するためにデュアルニューラルネットワークを利用するdNNsolveを紹介します。
我々は,dNNsolveが1,2,3次元の幅広いODE/PDEを解くことができることを示す。
論文 参考訳(メタデータ) (2021-03-15T19:14:41Z) - Physics informed deep learning for computational elastodynamics without
labeled data [13.084113582897965]
ラベル付きデータに頼らずにエラストダイナミックス問題をモデル化するために,混合可変出力を持つ物理インフォームドニューラルネットワーク(PINN)を提案する。
その結果,計算力学応用の文脈におけるPINNの有望性を示す。
論文 参考訳(メタデータ) (2020-06-10T19:05:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。