論文の概要: A new paradigm for global sensitivity analysis
- arxiv url: http://arxiv.org/abs/2409.06271v1
- Date: Tue, 10 Sep 2024 07:20:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-11 18:50:07.695664
- Title: A new paradigm for global sensitivity analysis
- Title(参考訳): グローバル感度分析のための新しいパラダイム
- Authors: Gildas Mazo,
- Abstract要約: グローバル感度分析の現在の理論はスコープに限られており、例えば、分析は出力の分散に限られている。
これらの重要な問題は,新しいパラダイムを採用することで,一度に解決できることが示されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: <div><p>Current theory of global sensitivity analysis, based on a nonlinear functional ANOVA decomposition of the random output, is limited in scope-for instance, the analysis is limited to the output's variance and the inputs have to be mutually independent-and leads to sensitivity indices the interpretation of which is not fully clear, especially interaction effects. Alternatively, sensitivity indices built for arbitrary user-defined importance measures have been proposed but a theory to define interactions in a systematic fashion and/or establish a decomposition of the total importance measure is still missing. It is shown that these important problems are solved all at once by adopting a new paradigm. By partitioning the inputs into those causing the change in the output and those which do not, arbitrary user-defined variability measures are identified with the outcomes of a factorial experiment at two levels, leading to all factorial effects without assuming any functional decomposition. To link various well-known sensitivity indices of the literature (Sobol indices and Shapley effects), weighted factorial effects are studied and utilized.</p></div>
- Abstract(参考訳): ランダム出力の非線形機能的ANOVA分解に基づく大域感度解析のCurrent理論は、スコープにおいて制限されており、例えば、分析は出力の分散に制限されており、入力は相互独立でなければならない。
あるいは、任意のユーザ定義の重要度尺度のために構築された感度指標も提案されているが、体系的な方法で相互作用を定義したり、合計重要度尺度の分解を確立する理論はいまだに欠落している。
これらの重要な問題は,新しいパラダイムを採用することで,一度に解決できることが示されている。
入力を出力の変化の原因となるものとしないものとに分割することにより、任意のユーザ定義の変動度尺度を2段階の因子実験の結果と同定し、機能的分解を仮定せずにすべての因子的効果をもたらす。
文献の様々なよく知られた感度指標(ソボ指標とシェープ効果)をリンクするために、重み付けされた因子効果を研究、利用した。
</p></div。
関連論文リスト
- Local Learning for Covariate Selection in Nonparametric Causal Effect Estimation with Latent Variables [13.12743473333296]
非実験データから因果効果を推定することは、科学の多くの分野における根本的な問題である。
非パラメトリック因果効果推定における共変量選択のための新しい局所学習手法を提案する。
我々は、合成データと実世界のデータの両方に関する広範な実験を通じて、アルゴリズムを検証する。
論文 参考訳(メタデータ) (2024-11-25T12:08:54Z) - Global Sensitivity Analysis of Uncertain Parameters in Bayesian Networks [4.404496835736175]
我々は,大域的分散に基づくパラメータの感度分析を行う。
我々の方法は不確実性をネットワークの$n$追加変数としてエンコードすることで機能する。
最後に、結果のネットワークにSobolの手法を適用して、グローバルな感度指標を$n$とする。
論文 参考訳(メタデータ) (2024-06-09T12:36:38Z) - Causality Pursuit from Heterogeneous Environments via Neural Adversarial Invariance Learning [12.947265104477237]
データから因果関係を抽出することは、科学的発見、治療介入、伝達学習における根本的な問題である。
Focused Adversial Invariant Regularization (FAIR) フレームワークは、革新的なミニマックス最適化アプローチを採用している。
FAIR-NNは最小の識別条件下で不変変数と準因果変数を見つけることができる。
論文 参考訳(メタデータ) (2024-05-07T23:37:40Z) - A Neural Framework for Generalized Causal Sensitivity Analysis [78.71545648682705]
本稿では,因果感受性分析のためのニューラルネットワークフレームワークであるNeuralCSAを提案する。
我々は、NeuralCSAが関心の因果クエリに有効な境界を推測できることを理論的に保証する。
論文 参考訳(メタデータ) (2023-11-27T17:40:02Z) - Towards stable real-world equation discovery with assessing
differentiating quality influence [52.2980614912553]
一般的に用いられる有限差分法に代わる方法を提案する。
我々は,これらの手法を実問題と類似した問題に適用可能であること,および方程式発見アルゴリズムの収束性を確保する能力の観点から評価する。
論文 参考訳(メタデータ) (2023-11-09T23:32:06Z) - Learning Linear Causal Representations from Interventions under General
Nonlinear Mixing [52.66151568785088]
介入対象にアクセスできることなく、未知の単一ノード介入を考慮し、強い識別可能性を示す。
これは、ディープニューラルネットワークの埋め込みに対する非ペアの介入による因果識別性の最初の例である。
論文 参考訳(メタデータ) (2023-06-04T02:32:12Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
本研究では, 因果表現学習, 潜伏因果変数を推定するタスク, およびそれらの変数の混合から因果関係を考察する。
我々のゴールは、根底にある真理潜入者とその因果グラフの両方を、介入データから解決不可能なあいまいさの集合まで識別することである。
論文 参考訳(メタデータ) (2023-06-01T10:51:58Z) - Sensitivity Analysis of High-Dimensional Models with Correlated Inputs [0.0]
相関パラメータの感度は大きさだけでなく、微分に基づく指数の符号も逆転することができる。
相関パラメータの感度が大まかに異なるだけでなく、微分に基づく指数の符号も逆転できることを示した。
論文 参考訳(メタデータ) (2023-05-31T14:48:54Z) - Data-Driven Influence Functions for Optimization-Based Causal Inference [105.5385525290466]
統計的汎関数に対するガトー微分を有限差分法で近似する構成的アルゴリズムについて検討する。
本研究では,確率分布を事前知識がないが,データから推定する必要がある場合について検討する。
論文 参考訳(メタデータ) (2022-08-29T16:16:22Z) - On Finite-Sample Identifiability of Contrastive Learning-Based Nonlinear
Independent Component Analysis [11.012445089716016]
この研究は GCL ベースの nICA の有限サンプル識別可能性解析を行う。
本フレームワークは, GCL損失関数の特性, 統計解析, 数値微分を加味したものである。
論文 参考訳(メタデータ) (2022-06-14T04:59:08Z) - Non-Linear Spectral Dimensionality Reduction Under Uncertainty [107.01839211235583]
我々は、不確実性情報を活用し、いくつかの従来のアプローチを直接拡張する、NGEUと呼ばれる新しい次元削減フレームワークを提案する。
提案したNGEUの定式化は,大域的な閉形式解を示し,Radecherの複雑性に基づいて,基礎となる不確実性がフレームワークの一般化能力に理論的にどのように影響するかを分析する。
論文 参考訳(メタデータ) (2022-02-09T19:01:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。