Characterization of the spin and crystal field Hamiltonian of erbium dopants in silicon
- URL: http://arxiv.org/abs/2409.06571v1
- Date: Tue, 10 Sep 2024 15:07:27 GMT
- Title: Characterization of the spin and crystal field Hamiltonian of erbium dopants in silicon
- Authors: Adrian Holzäpfel, Stephan Rinner, Kilian Sandholzer, Andreas Gritsch, Thierry Chanelière, Andreas Reiserer,
- Abstract summary: Er:Si platforms combine advanced wafer-scale nanofabrication technology with coherent emission in the minimal-loss band of optical fibers.
Recent studies have reported two distinct sites in the silicon lattice in which erbium can be reproducibly integrated.
This is a key step towards a detailed microscopic understanding of the erbium sites, which may help to improve the integration yield.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The integration of coherent emitters into low-loss photonic circuits is a key technology for quantum networking. In this context, nanophotonic silicon devices implanted with erbium are a promising hardware platform that combines advanced wafer-scale nanofabrication technology with coherent emission in the minimal-loss band of optical fibers. Recent studies have reported two distinct sites in the silicon lattice in which erbium can be reproducibly integrated with particularly promising properties. Here, for an in-depth analysis of these sites, resonant fluorescence spectroscopy is performed on a nanophotonic waveguide in magnetic fields applied along different orientations. In this way, the site symmetry is determined, the spin Hamiltonian is reconstructed and a partial fit of the crystal field Hamiltonian is performed. The obtained quantitative description of the magnetic interaction allows the optimization of Zeeman splittings, optical branching ratios or microwave driving to the needs of future experiments. Beyond that, the derived site symmetry constrains the location of the erbium dopant in the silicon unit cell. This is a key step towards a detailed microscopic understanding of the erbium sites, which may help to improve the integration yield, thus paving the way to efficient nanophotonic quantum memories based on the Er:Si platform.
Related papers
- Purcell enhancement and spin spectroscopy of silicon vacancy centers in silicon carbide using an ultra-small mode-volume plasmonic cavity [0.0]
We report the integration of V$_Si$ centers with a plasmonic nanocavity to enhance the emission.
The results highlight the potential of nanophotonic structures for advancing quantum networking technologies.
arXiv Detail & Related papers (2024-07-08T13:51:10Z) - Photophysics of Intrinsic Single-Photon Emitters in Silicon Nitride at
Low Temperatures [97.5153823429076]
A robust process for fabricating intrinsic single-photon emitters in silicon nitride has been recently established.
These emitters show promise for quantum applications due to room-temperature operation and monolithic integration with the technologically mature silicon nitride photonics platform.
arXiv Detail & Related papers (2023-01-25T19:53:56Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Silicon nitride waveguides with intrinsic single-photon emitters for
integrated quantum photonics [97.5153823429076]
We show the first successful coupling of photons from intrinsic single-photon emitters in SiN to monolithically integrated waveguides made of the same material.
Results pave the way toward the realization of scalable, technology-ready quantum photonic integrated circuitry.
arXiv Detail & Related papers (2022-05-17T16:51:29Z) - On-chip single-photon subtraction by individual silicon vacancy centers
in a laser-written diamond waveguide [48.7576911714538]
Laser-written diamond photonics offers three-dimensional fabrication capabilities and large mode-field diameters matched to fiber optic technology.
To realize large cooperativities, we combine excitation of single shallow-implanted silicon vacancy centers via large numerical aperture optics.
We demonstrate single-emitter extinction measurements with a cooperativity of 0.153 and a beta factor of 13% yielding 15.3% as lower bound for the quantum efficiency of a single emitter.
arXiv Detail & Related papers (2021-11-02T16:01:15Z) - Narrow optical transitions in erbium-implanted silicon waveguides [0.0]
We show that erbium dopants can be reproducibly integrated at well-defined lattice sites by implantation into pure silicon.
We achieve a narrow inhomogeneous broadening, less than 1 GHz, strong optical transitions, and an outstanding optical coherence even at temperatures of 8 K.
arXiv Detail & Related papers (2021-08-11T09:44:12Z) - Near-Field Terahertz Nanoscopy of Coplanar Microwave Resonators [61.035185179008224]
Superconducting quantum circuits are one of the leading quantum computing platforms.
To advance superconducting quantum computing to a point of practical importance, it is critical to identify and address material imperfections that lead to decoherence.
Here, we use terahertz Scanning Near-field Optical Microscopy to probe the local dielectric properties and carrier concentrations of wet-etched aluminum resonators on silicon.
arXiv Detail & Related papers (2021-06-24T11:06:34Z) - Experimental study of perovskite nanocrystals as single photon sources
for integrated quantum photonics [0.0]
The thesis is devoted to the study of the coupling of single-photon emitters with photonic nanostructures.
I present a full characterization of perovskite nanocrystals with improved photo-stability, reduced blinking ad strong antibunching.
I show how the near field around ion exchange waveguides can be employed together with near-field polymerization to trap single-photon emitters onto the waveguides.
arXiv Detail & Related papers (2021-05-29T08:12:31Z) - Efficient DNA-driven nanocavities for approaching quasi-deterministic
strong coupling to a few fluorophores [4.138309038177141]
A strong coupling unit based on an emitter-plasmonic nanocavity system has the potential to bring devices to the microchip scale at ambient conditions.
In this work, fluorophore-modified DNA strands are utilized to drive the formation of particle-on-film plasmonic nanocavities.
The high correlation between electronic transition of the fluorophore and the cavity resonance is observed, implying more vibrational modes may be involved.
arXiv Detail & Related papers (2021-03-11T15:51:09Z) - Erbium dopants in silicon nanophotonic waveguides [0.0]
We present resonant spectroscopy of implanted erbium dopants in nanophotonic waveguides.
We observe erbium incorporation at well-defined lattice sites with a thousandfold reduced inhomogeneous broadening of about 1 GHz.
Our study thus introduces a novel materials platform for the implementation of on-chip quantum memories, microwave-to-optical conversion, and distributed quantum information processing.
arXiv Detail & Related papers (2020-05-04T18:13:46Z) - Coupling colloidal quantum dots to gap waveguides [62.997667081978825]
coupling between single photon emitters and integrated photonic circuits is an emerging topic relevant for quantum information science and other nanophotonic applications.
We investigate the coupling between a hybrid system of colloidal quantum dots and propagating gap modes of a silicon nitride waveguide system.
arXiv Detail & Related papers (2020-03-30T21:18:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.