論文の概要: Automated Speaking Assessment of Conversation Tests with Novel Graph-based Modeling on Spoken Response Coherence
- arxiv url: http://arxiv.org/abs/2409.07064v2
- Date: Fri, 29 Nov 2024 02:37:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-02 15:16:48.412543
- Title: Automated Speaking Assessment of Conversation Tests with Novel Graph-based Modeling on Spoken Response Coherence
- Title(参考訳): 音声応答コヒーレンスに基づく新しいグラフベースモデリングによる会話テストの自動評価
- Authors: Jiun-Ting Li, Bi-Cheng Yan, Tien-Hong Lo, Yi-Cheng Wang, Yung-Chang Hsu, Berlin Chen,
- Abstract要約: ASACは、1つ以上の候補者と対話する環境でL2話者の全体的な発話能力を評価することを目的としている。
本稿では,広い応答間相互作用とニュアンス付き意味情報の両方を適切に組み込んだ階層グラフモデルを提案する。
NICT-JLEベンチマークデータセットの大規模な実験結果から,提案手法が予測精度を大幅に向上する可能性が示唆された。
- 参考スコア(独自算出の注目度): 11.217656140423207
- License:
- Abstract: Automated speaking assessment in conversation tests (ASAC) aims to evaluate the overall speaking proficiency of an L2 (second-language) speaker in a setting where an interlocutor interacts with one or more candidates. Although prior ASAC approaches have shown promising performance on their respective datasets, there is still a dearth of research specifically focused on incorporating the coherence of the logical flow within a conversation into the grading model. To address this critical challenge, we propose a hierarchical graph model that aptly incorporates both broad inter-response interactions (e.g., discourse relations) and nuanced semantic information (e.g., semantic words and speaker intents), which is subsequently fused with contextual information for the final prediction. Extensive experimental results on the NICT-JLE benchmark dataset suggest that our proposed modeling approach can yield considerable improvements in prediction accuracy with respect to various assessment metrics, as compared to some strong baselines. This also sheds light on the importance of investigating coherence-related facets of spoken responses in ASAC.
- Abstract(参考訳): 会話テスト(ASAC)における発話自動評価は,L2話者が1人以上の候補者と対話する場面において,話者の発話能力を評価することを目的としている。
以前のASACアプローチは、それぞれのデータセットで有望なパフォーマンスを示しているが、会話に論理フローの一貫性をグレーディングモデルに組み込むことに特に焦点を絞った研究は、まだ続いている。
この重要な課題に対処するため、我々は、広範囲な応答間相互作用(例えば、談話関係)とニュアンス付き意味情報(例えば、意味語、話者意図)を適切に組み込んだ階層グラフモデルを提案し、最終的な予測のために文脈情報と融合する。
NICT-JLEベンチマークデータセットの大規模な実験結果から,提案手法は様々な評価指標に対する予測精度を大幅に向上させる可能性が示唆された。
このことは、ASACにおける音声応答のコヒーレンスに関連する側面を調べることの重要性にも光を当てている。
関連論文リスト
- FCC: Fusing Conversation History and Candidate Provenance for Contextual
Response Ranking in Dialogue Systems [53.89014188309486]
複数のチャネルからコンテキスト情報を統合できるフレキシブルなニューラルネットワークフレームワークを提案する。
会話応答ランキングタスクの評価に広く用いられているMSDialogデータセット上で,本モデルの評価を行った。
論文 参考訳(メタデータ) (2023-03-31T23:58:28Z) - GODEL: Large-Scale Pre-Training for Goal-Directed Dialog [119.1397031992088]
ダイアログのための大規模事前学習言語モデルであるGODELを紹介する。
GODELは、数ショットの微調整設定で、最先端の事前訓練ダイアログモデルより優れていることを示す。
評価手法の新たな特徴は,応答の有用性を評価するユーティリティの概念の導入である。
論文 参考訳(メタデータ) (2022-06-22T18:19:32Z) - Conversational speech recognition leveraging effective fusion methods
for cross-utterance language modeling [12.153618111267514]
音声認識における言語モデリングのための異種会話履歴融合手法を提案する。
現在の発話の音響埋め込みとそれに対応する会話履歴のセマンティックコンテンツとを融合して利用する新しい音声融合機構が導入された。
我々は,ASR N-best仮説再構成タスクを予測問題として,象徴的な事前学習型LMであるBERTを活用する。
論文 参考訳(メタデータ) (2021-11-05T09:07:23Z) - Deep Learning-based Non-Intrusive Multi-Objective Speech Assessment
Model with Cross-Domain Features [30.57631206882462]
MOSA-Netは、テスト音声信号を入力として、音声品質、知性、歪み評価スコアを推定するように設計されている。
音声品質(PESQ)、短時間客観性(STOI)、音声歪み指数(BLS)のスコアを、雑音および拡張音声発話の両方で正確に予測できることを,MOSA-Netが示す。
論文 参考訳(メタデータ) (2021-11-03T17:30:43Z) - LDNet: Unified Listener Dependent Modeling in MOS Prediction for
Synthetic Speech [67.88748572167309]
本稿では,平均世論スコア(MOS)予測のための統合フレームワークLDNetを提案する。
より安定した結果と効率的な計算を提供する2つの推論手法を提案する。
論文 参考訳(メタデータ) (2021-10-18T08:52:31Z) - DialogueCSE: Dialogue-based Contrastive Learning of Sentence Embeddings [33.89889949577356]
本稿では,対話型コントラスト学習手法であるDialogueCSEを提案する。
我々は,Microsoft Dialogue Corpus,Jing Dong Dialogue Corpus,E-Commerce Dialogue Corpusの3つの多ターン対話データセットについて評価を行った。
論文 参考訳(メタデータ) (2021-09-26T13:25:41Z) - Self-supervised Dialogue Learning for Spoken Conversational Question
Answering [29.545937716796082]
音声対話質問応答(SCQA)では、複数の会話を含む固定された音声文書を検索して分析することにより、対応する質問に対する回答を生成する。
本研究では,不整合判定,挿入検出,質問予測などの自己教師付き学習手法を導入し,コア参照の解決と対話のコヒーレンスを明確に把握する。
提案手法は,従来の事前学習言語モデルと比較して,より一貫性があり,意味があり,適切な応答を提供する。
論文 参考訳(メタデータ) (2021-06-04T00:09:38Z) - I like fish, especially dolphins: Addressing Contradictions in Dialogue
Modeling [104.09033240889106]
DialoguE Contradiction Detection Task(DECODE)と、人間とロボットの矛盾した対話の両方を含む新しい会話データセットを紹介します。
次に、事前学習したトランスフォーマーモデルを用いて、定型的非構造的アプローチと矛盾検出を行う構造的発話に基づくアプローチを比較する。
論文 参考訳(メタデータ) (2020-12-24T18:47:49Z) - Learning an Effective Context-Response Matching Model with
Self-Supervised Tasks for Retrieval-based Dialogues [88.73739515457116]
我々は,次のセッション予測,発話復元,不整合検出,一貫性判定を含む4つの自己教師型タスクを導入する。
我々はPLMに基づく応答選択モデルとこれらの補助タスクをマルチタスク方式で共同で訓練する。
実験結果から,提案した補助的自己教師型タスクは,多ターン応答選択において大きな改善をもたらすことが示された。
論文 参考訳(メタデータ) (2020-09-14T08:44:46Z) - Dialogue-Based Relation Extraction [53.2896545819799]
本稿では,人間による対話型関係抽出(RE)データセットDialogREを提案する。
我々は,対話型タスクと従来のREタスクの類似点と相違点の分析に基づいて,提案課題において話者関連情報が重要な役割を担っていると論じる。
実験結果から,ベストパフォーマンスモデルにおける話者認識の拡張が,標準設定と会話評価設定の両方において向上することが示された。
論文 参考訳(メタデータ) (2020-04-17T03:51:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。