Classifying Multipartite Continuous Variable Entanglement Structures through Data-augmented Neural Networks
- URL: http://arxiv.org/abs/2409.07909v2
- Date: Tue, 29 Oct 2024 13:22:39 GMT
- Title: Classifying Multipartite Continuous Variable Entanglement Structures through Data-augmented Neural Networks
- Authors: Xiaoting Gao, Mingsheng Tian, Feng-Xiao Sun, Ya-Dong Wu, Yu Xiang, Qiongyi He,
- Abstract summary: We develop a data-augmented neural network to complete a task with homodyne measurement data.
By testing on randomly generated tripartite and quadripartite states, we demonstrate that the network can indicate the entanglement structure among the various partitions.
Our approach allows us to further extend the use of data-driven machine learning techniques to more complex tasks of learning quantum systems encoded in a large Hilbert space.
- Score: 1.653052113976862
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural networks have emerged as a promising paradigm for quantum information processing, yet they confront the challenge of generating training datasets with sufficient size and rich diversity, which is particularly acute when dealing with multipartite quantum systems. For instance, in the task of classifying different structures of multipartite entanglement in continuous variable systems, it is necessary to simulate a large number of infinite-dimension state data that can cover as many types of non-Gaussian states as possible. Here, we develop a data-augmented neural network to complete this task with homodyne measurement data. A quantum data augmentation method based on classical data processing techniques and quantum physical principles is proposed to efficiently enhance the network performance. By testing on randomly generated tripartite and quadripartite states, we demonstrate that the network can indicate the entanglement structure among the various partitions and the accuracies are significantly improved with data augmentation. Our approach allows us to further extend the use of data-driven machine learning techniques to more complex tasks of learning quantum systems encoded in a large Hilbert space.
Related papers
- Quantum Convolutional Neural Network with Flexible Stride [7.362858964229726]
We propose a novel quantum convolutional neural network algorithm.
It can flexibly adjust the stride to accommodate different tasks.
It can achieve exponential acceleration of data scale in less memory compared with its classical counterpart.
arXiv Detail & Related papers (2024-12-01T02:37:06Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Guarantees on the structure of experimental quantum networks [105.13377158844727]
Quantum networks connect and supply a large number of nodes with multi-party quantum resources for secure communication, networked quantum computing and distributed sensing.
As these networks grow in size, certification tools will be required to answer questions regarding their properties.
We demonstrate a general method to guarantee that certain correlations cannot be generated in a given quantum network.
arXiv Detail & Related papers (2024-03-04T19:00:00Z) - Enhancing the expressivity of quantum neural networks with residual
connections [0.0]
We propose a quantum circuit-based algorithm to implement quantum residual neural networks (QResNets)
Our work lays the foundation for a complete quantum implementation of the classical residual neural networks.
arXiv Detail & Related papers (2024-01-29T04:00:51Z) - Multimodal deep representation learning for quantum cross-platform
verification [60.01590250213637]
Cross-platform verification, a critical undertaking in the realm of early-stage quantum computing, endeavors to characterize the similarity of two imperfect quantum devices executing identical algorithms.
We introduce an innovative multimodal learning approach, recognizing that the formalism of data in this task embodies two distinct modalities.
We devise a multimodal neural network to independently extract knowledge from these modalities, followed by a fusion operation to create a comprehensive data representation.
arXiv Detail & Related papers (2023-11-07T04:35:03Z) - Learning quantum properties from short-range correlations using multi-task networks [3.7228085662092845]
We introduce a neural network model that can predict various quantum properties of many-body quantum states with constant correlation length.
The model is based on the technique of multi-task learning, which we show to offer several advantages over traditional single-task approaches.
arXiv Detail & Related papers (2023-10-18T08:53:23Z) - ShadowNet for Data-Centric Quantum System Learning [188.683909185536]
We propose a data-centric learning paradigm combining the strength of neural-network protocols and classical shadows.
Capitalizing on the generalization power of neural networks, this paradigm can be trained offline and excel at predicting previously unseen systems.
We present the instantiation of our paradigm in quantum state tomography and direct fidelity estimation tasks and conduct numerical analysis up to 60 qubits.
arXiv Detail & Related papers (2023-08-22T09:11:53Z) - Scalable approach to many-body localization via quantum data [69.3939291118954]
Many-body localization is a notoriously difficult phenomenon from quantum many-body physics.
We propose a flexible neural network based learning approach that circumvents any computationally expensive step.
Our approach can be applied to large-scale quantum experiments to provide new insights into quantum many-body physics.
arXiv Detail & Related papers (2022-02-17T19:00:09Z) - Variational learning for quantum artificial neural networks [0.0]
We first review a series of recent works describing the implementation of artificial neurons and feed-forward neural networks on quantum processors.
We then present an original realization of efficient individual quantum nodes based on variational unsampling protocols.
While keeping full compatibility with the overall memory-efficient feed-forward architecture, our constructions effectively reduce the quantum circuit depth required to determine the activation probability of single neurons.
arXiv Detail & Related papers (2021-03-03T16:10:15Z) - Probing Criticality in Quantum Spin Chains with Neural Networks [0.0]
We show that even neural networks with no hidden layers can be effectively trained to distinguish between magnetically ordered and disordered phases.
Our results extend to a wide class of interacting quantum many-body systems and illustrate the wide applicability of neural networks to many-body quantum physics.
arXiv Detail & Related papers (2020-05-05T12:34:50Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
In this paper we combine machine-learning tools and the theory of quantum entanglement to perform entanglement classification for multipartite qubit systems in pure states.
We use a parameterisation of quantum systems using artificial neural networks in a restricted Boltzmann machine (RBM) architecture, known as Neural Network Quantum States (NNS)
arXiv Detail & Related papers (2019-12-31T07:40:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.