1xN DWDM channel selective quantum frequency conversion
- URL: http://arxiv.org/abs/2409.08025v1
- Date: Thu, 12 Sep 2024 13:09:59 GMT
- Title: 1xN DWDM channel selective quantum frequency conversion
- Authors: Tomoaki Arizono, Toshiki Kobayashi, Shigehito Miki, Hirotaka Terai, Tsuyoshi Kodama, Hideki Shimoi, Takashi Yamamoto, Rikizo Ikuta,
- Abstract summary: Quantum frequency conversion is essential for bridging different quantum systems over optical fiber networks.
In this work, we demonstrate a channel-selective quantum frequency conversion (CS-QFC)
The 2.5 THz bandwidth of our CS-QFC system shows the ability to establish a 100-ch DWDM dynamic link from a single quantum system.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Dense Wavelength Division Multiplexing (DWDM) is a key technology for realizing high-capacity and flexible quantum communication networks. In addition, to realize the emerging quantum internet, quantum frequency conversion is also essential for bridging different quantum systems over optical fiber networks. In this work, we demonstrate a channel-selective quantum frequency conversion (CS-QFC), which allows active selection of the frequency of the converted photon from multiple DWDM channels. The 2.5 THz bandwidth of our CS-QFC system shows the ability to establish a 100-ch DWDM dynamic link from a single quantum system. It promises to increase the diversity of the quantum network.
Related papers
- Multiplexed Processing of Quantum Information Across an Ultra-wide Optical Bandwidth [0.0]
Current quantum protocols are limited by the narrow electronic bandwidth of standard measurement devices.
We present a concept of frequency multiplexed quantum channels and a set of methods to process quantum information efficiently across the available optical bandwidth.
arXiv Detail & Related papers (2023-10-26T23:50:20Z) - Multimode Squeezed State for Reconfigurable Quantum Networks at
Telecommunication Wavelengths [0.0]
We present an experimental source of multimode squeezed states of light at telecommunication wavelengths.
Generation at such wavelengths is especially important as it can enable quantum information processing, communication, and sensing beyond the laboratory scale.
Results pave the way for a scalable implementation of continuous variable quantum information protocols at telecommunication wavelengths.
arXiv Detail & Related papers (2023-06-12T17:52:40Z) - Robust excitation of C-band quantum dots for quantum communication [0.0]
We experimentally demonstrate how varying the pump energy and spectral detuning can improve quantum-secured communication rates.
These findings have significant implications for general implementations of QD single-photon sources in practical quantum communication networks.
arXiv Detail & Related papers (2023-05-22T17:35:18Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Simulation of Entanglement Generation between Absorptive Quantum
Memories [56.24769206561207]
We use the open-source Simulator of QUantum Network Communication (SeQUeNCe), developed by our team, to simulate entanglement generation between two atomic frequency comb (AFC) absorptive quantum memories.
We realize the representation of photonic quantum states within truncated Fock spaces in SeQUeNCe.
We observe varying fidelity with SPDC source mean photon number, and varying entanglement generation rate with both mean photon number and memory mode number.
arXiv Detail & Related papers (2022-12-17T05:51:17Z) - A Continuous Variable Quantum Switch [0.0]
We present a quantum repeating switch for CV quantum encodings that caters to multiple communication flows.
The architecture of the switch is based on quantum light sources, detectors, memories, and switching fabric.
We present numerical results on an achievable bipartite entanglement request rate region for multiple CV entanglement flows.
arXiv Detail & Related papers (2022-09-17T15:23:20Z) - QTN-VQC: An End-to-End Learning framework for Quantum Neural Networks [71.14713348443465]
We introduce a trainable quantum tensor network (QTN) for quantum embedding on a variational quantum circuit (VQC)
QTN enables an end-to-end parametric model pipeline, namely QTN-VQC, from the generation of quantum embedding to the output measurement.
Our experiments on the MNIST dataset demonstrate the advantages of QTN for quantum embedding over other quantum embedding approaches.
arXiv Detail & Related papers (2021-10-06T14:44:51Z) - Dynamic DV-QKD Networking in Fully-Meshed Software-Defined Optical
Networks [0.3355436702348693]
We demonstrate a four-node trusted-node-free metro network configuration with dynamic discrete-variable quantum key distribution DV-QKD networking capabilities.
Coexistence of a quantum channel and six classical channels through a field-deployed fibre test network is examined.
arXiv Detail & Related papers (2021-08-25T09:46:32Z) - Path-encoded high-dimensional quantum communication over a 2 km
multicore fiber [50.591267188664666]
We demonstrate the reliable transmission over a 2 km long multicore fiber of path-encoded high-dimensional quantum states.
A stable interferometric detection is guaranteed, allowing for low error rates and the generation of 6.3 Mbit/s of secret key rate.
arXiv Detail & Related papers (2021-03-10T11:02:45Z) - Telecom-heralded entanglement between remote multimode solid-state
quantum memories [55.41644538483948]
Future quantum networks will enable the distribution of entanglement between distant locations and allow applications in quantum communication, quantum sensing and distributed quantum computation.
Here we report the demonstration of heralded entanglement between two spatially separated quantum nodes, where the entanglement is stored in multimode solid-state quantum memories.
We also show that the generated entanglement is robust against loss in the heralding path, and demonstrate temporally multiplexed operation, with 62 temporal modes.
arXiv Detail & Related papers (2021-01-13T14:31:54Z) - Frequency-Domain Quantum Interference with Correlated Photons from an
Integrated Microresonator [96.25398432840109]
We report frequency-domain Hong-Ou-Mandel interference with spectrally distinct photons generated from a chip-based microresonator.
Our work establishes four-wave mixing as a tool for selective high-fidelity two-photon operations in the frequency domain.
arXiv Detail & Related papers (2020-03-14T01:48:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.