Faster Algorithmic Quantum and Classical Simulations by Corrected Product Formulas
- URL: http://arxiv.org/abs/2409.08265v2
- Date: Fri, 13 Sep 2024 17:02:32 GMT
- Title: Faster Algorithmic Quantum and Classical Simulations by Corrected Product Formulas
- Authors: Mohsen Bagherimehrab, Dominic W. Berry, Philipp Schleich, Abdulrahman Aldossary, Jorge A. Campos Gonzalez Angulo, Alan Aspuru-Guzik,
- Abstract summary: Hamiltonian simulation using product formulas is arguably the most straightforward and practical approach for algorithmic simulation on a quantum computer.
We present corrected product formulas (CPFs), a variation of product formulas achieved by injecting auxiliary terms called correctors into standard product formulas.
CPFs could be a valuable algorithmic tool for early fault-tolerant quantum computers with limited computing resources.
- Score: 0.06425840142026841
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hamiltonian simulation using product formulas is arguably the most straightforward and practical approach for algorithmic simulation of a quantum system's dynamics on a quantum computer. Here we present corrected product formulas (CPFs), a variation of product formulas achieved by injecting auxiliary terms called correctors into standard product formulas. We establish several correctors that greatly improve the accuracy of standard product formulas for simulating Hamiltonians comprised of two partitions that can be exactly simulated, a common feature of lattice Hamiltonians, while only adding a small additive or multiplicative factor to the simulation cost. We show that correctors are particularly advantageous for perturbed systems, where one partition has a relatively small norm compared to the other, as they allow the small norm to be utilized as an additional parameter for controlling the simulation error. We demonstrate the performance of CPFs by numerical simulations for several lattice Hamiltonians. Numerical results show our theoretical error bound for CPFs matches or exceeds the empirical error of standard product formulas for these systems. CPFs could be a valuable algorithmic tool for early fault-tolerant quantum computers with limited computing resources. As for standard product formulas, CPFs could also be used for simulations on a classical computer.
Related papers
- Quantum simulation of time-dependent Hamiltonians via commutator-free quasi-Magnus operators [0.7799708033005247]
Magnus operator is a popular method for time-dependent Hamiltonian simulation in computational mathematics.
The development of commutator-free quasi-Magnus operators (CFQMs) circumvents this obstacle.
We show that CFQMs are often the most efficient product-formula technique available by more than an order of magnitude.
arXiv Detail & Related papers (2024-03-20T18:01:27Z) - A hybrid quantum-classical algorithm for multichannel quantum scattering
of atoms and molecules [62.997667081978825]
We propose a hybrid quantum-classical algorithm for solving the Schr"odinger equation for atomic and molecular collisions.
The algorithm is based on the $S$-matrix version of the Kohn variational principle, which computes the fundamental scattering $S$-matrix.
We show how the algorithm could be scaled up to simulate collisions of large polyatomic molecules.
arXiv Detail & Related papers (2023-04-12T18:10:47Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
We introduce the qDrift protocol, which builds random product formulas by sampling from the Hamiltonian according to the coefficients.
We show that the simulation cost can be reduced while achieving the same accuracy, by considering the individual simulation cost during the sampling stage.
Results are confirmed by numerical simulations performed on a lattice nuclear effective field theory.
arXiv Detail & Related papers (2022-12-12T15:06:32Z) - Well-conditioned multi-product formulas for hardware-friendly
Hamiltonian simulation [1.433758865948252]
We show how to design MPFs that do not amplify the hardware and sampling errors, and demonstrate their performance.
We observe an error reduction of up to an order of magnitude when compared to a product formula approach by suppressing hardware noise with Pauli Twirling, pulse efficient transpilation, and a novel zero-noise extrapolation based on scaled cross-resonance pulses.
arXiv Detail & Related papers (2022-07-22T18:00:05Z) - Variational Adiabatic Gauge Transformation on real quantum hardware for
effective low-energy Hamiltonians and accurate diagonalization [68.8204255655161]
We introduce the Variational Adiabatic Gauge Transformation (VAGT)
VAGT is a non-perturbative hybrid quantum algorithm that can use nowadays quantum computers to learn the variational parameters of the unitary circuit.
The accuracy of VAGT is tested trough numerical simulations, as well as simulations on Rigetti and IonQ quantum computers.
arXiv Detail & Related papers (2021-11-16T20:50:08Z) - Hamiltonian simulation with random inputs [74.82351543483588]
Theory of average-case performance of Hamiltonian simulation with random initial states.
Numerical evidence suggests that this theory accurately characterizes the average error for concrete models.
arXiv Detail & Related papers (2021-11-08T19:08:42Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
We present a constructive algorithm for generating quantum circuits with time-independent depth.
We highlight our algorithm for special classes of models, including Anderson localization in one dimensional transverse field XY model.
In addition to providing exact circuits for a broad set of spin and fermionic models, our algorithm provides broad analytic and numerical insight into optimal Hamiltonian simulations.
arXiv Detail & Related papers (2021-04-01T19:06:00Z) - Orbital transformations to reduce the 1-norm of the electronic structure
Hamiltonian for quantum computing applications [0.0]
We investigate the effect of classical pre-optimization of the electronic structure Hamiltonian representation, via single-particle basis transformation, on the "1-norm"
We derive a new formula for the 1-norm as a function of the electronic integrals, and use this quantity as a cost function for an orbital-optimization scheme.
arXiv Detail & Related papers (2021-03-26T22:05:42Z) - Randomizing multi-product formulas for Hamiltonian simulation [2.2049183478692584]
We introduce a scheme for quantum simulation that unites the advantages of randomized compiling on the one hand and higher-order multi-product formulas on the other.
Our framework reduces the circuit depth by circumventing the need for oblivious amplitude amplification.
Our algorithms achieve a simulation error that shrinks exponentially with the circuit depth.
arXiv Detail & Related papers (2021-01-19T19:00:23Z) - Quantum Algorithm for a Convergent Series of Approximations towards the
Exact Solution of the Lowest Eigenstates of a Hamiltonian [1.8895156959295205]
We present quantum algorithms for Hamiltonians of linear combinations of local unitary operators.
The algorithms implement a convergent series of approximations towards the exact solution of the full CI (configuration interaction) problem.
arXiv Detail & Related papers (2020-09-08T06:16:07Z) - Simulating nonnative cubic interactions on noisy quantum machines [65.38483184536494]
We show that quantum processors can be programmed to efficiently simulate dynamics that are not native to the hardware.
On noisy devices without error correction, we show that simulation results are significantly improved when the quantum program is compiled using modular gates.
arXiv Detail & Related papers (2020-04-15T05:16:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.