論文の概要: The Impact of Large Language Models on Open-source Innovation: Evidence from GitHub Copilot
- arxiv url: http://arxiv.org/abs/2409.08379v3
- Date: Tue, 10 Jun 2025 16:00:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-11 15:11:38.760316
- Title: The Impact of Large Language Models on Open-source Innovation: Evidence from GitHub Copilot
- Title(参考訳): 大規模な言語モデルがオープンソースイノベーションに与える影響 - GitHub Copilotからの証拠
- Authors: Doron Yeverechyahu, Raveesh Mayya, Gal Oestreicher-Singer,
- Abstract要約: 大規模言語モデル(LLM)は、ガイド付き設定における個人の生産性を高めることが示されている。
本稿では,LLMが協調作業の2つの側面,すなわち能力革新と反復的イノベーションに影響を及ぼすかどうかを考察する。
GitHub Copilotの選択的なロールアウトに関する自然な実験を活用することで、GitHub上のオープンソースプロジェクトに注力しています。
コントリビューション全体の飛躍的な増加を観察し、LLMが非ガイド環境で協調的なイノベーションを効果的に増強することを示唆している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have been shown to enhance individual productivity in guided settings. Whereas LLMs are likely to also transform innovation processes in a collaborative work setting, it is unclear what trajectory this transformation will follow. Innovation in these contexts encompasses both capability innovation that explores new possibilities by acquiring new competencies in a project and iterative innovation that exploits existing foundations by enhancing established competencies and improving project quality. Whether LLMs affect these two aspects of collaborative work and to what extent is an open empirical question. Open-source development provides an ideal setting to examine LLM impacts on these innovation types, as its voluntary and open/collaborative nature of contributions provides the greatest opportunity for technological augmentation. We focus on open-source projects on GitHub by leveraging a natural experiment around the selective rollout of GitHub Copilot (a programming-focused LLM) in October 2021, where GitHub Copilot selectively supported programming languages like Python or Rust, but not R or Haskell. We observe a significant jump in overall contributions, suggesting that LLMs effectively augment collaborative innovation in an unguided setting. Interestingly, Copilot's launch increased iterative innovation focused on maintenance-related or feature-refining contributions significantly more than it did capability innovation through code-development or feature-introducing commits. This disparity was more pronounced after the model upgrade in June 2022 and was evident in active projects with extensive coding activity, suggesting that as both LLM capabilities and/or available contextual information improve, the gap between capability and iterative innovation may widen. We discuss practical and policy implications to incentivize high-value innovative solutions.
- Abstract(参考訳): 大規模言語モデル(LLM)は、ガイド付き設定における個人の生産性を高めることが示されている。
LLMは、共同作業環境でイノベーションプロセスも変革する可能性が高いが、この変革がどんな道筋を辿るかは不明だ。
これらの文脈におけるイノベーションには、プロジェクトで新しい能力を取得することによって新たな可能性を探る能力革新と、確立された能力を高め、プロジェクト品質を向上させることで既存の基盤を活用する反復的イノベーションの両方が含まれる。
LLMが協調作業のこの2つの側面に影響を及ぼすかどうかは、オープンな経験的な疑問である。
オープンソース開発は、これらのイノベーションタイプに対するLCMの影響を調べるのに理想的な設定を提供する。
GitHub CopilotはPythonやRustのようなプログラミング言語を選択的にサポートしているが、RやHaskellはサポートしていない。
コントリビューション全体の飛躍的な増加を観察し、LLMが非ガイド環境で協調的なイノベーションを効果的に増強することを示唆している。
興味深いことに、Copilotのローンチによって、コード開発や機能導入コミットによる機能革新よりも、メンテナンス関連のコントリビューションや機能修正に重点を置いた反復的なイノベーションが増加した。
2022年6月のモデルアップグレード以降、この格差はより顕著になり、LLM機能と/または利用可能なコンテキスト情報の両方が向上するにつれて、能力と反復的革新のギャップが拡大する可能性が示唆された。
我々は、高価値イノベーティブなソリューションにインセンティブを与えるための実践的および政策的な意味について論じる。
関連論文リスト
- Paradigm shift on Coding Productivity Using GenAI [3.7117429391624803]
ジェネレーティブAI(GenAI)アプリケーションは、自動コード作成を可能にすることで、ソフトウェアエンジニアリングを変革している。
本稿では、通信とドメインにおけるGenAI符号化アシスタント(例えば、Codeium、Amazon Q)の採用について検討する。
論文 参考訳(メタデータ) (2025-04-25T15:00:06Z) - Improving Retrospective Language Agents via Joint Policy Gradient Optimization [57.35348425288859]
RetroActは、言語エージェントのタスク計画と自己反射進化機能を共同で最適化するフレームワークである。
模倣学習と強化学習を統合した2段階共同最適化プロセスを開発した。
RetroActはタスクのパフォーマンスと意思決定プロセスを大幅に改善しています。
論文 参考訳(メタデータ) (2025-03-03T12:54:54Z) - Skill Expansion and Composition in Parameter Space [17.016614374151747]
Parametric Skill Expansion and Composition (PSEC)はエージェントの能力を反復的に進化させるように設計された新しいフレームワークである。
PSECは、事前知識を活用して、新しい課題に効果的に取り組む能力が優れている。
論文 参考訳(メタデータ) (2025-02-09T15:22:38Z) - Weak Ties Explain Open Source Innovation [9.399494734600164]
GitHub上の3つの異なるインタラクションネットワークを通じて、開発者の知識獲得と、彼らが開発するプロジェクトの革新性との間にある相関関係について検討する。
今後のプロジェクト開発の革新性に対して,開発者が積極的に関与するプロジェクトの多様性が示唆される一方で,インタラクションの量には影響が最小限であることが示唆された。
論文 参考訳(メタデータ) (2024-11-08T15:39:33Z) - Measuring Software Innovation with Open Source Software Development Data [0.0]
本稿では,GitHub上のオープンソースソフトウェア(OSS)開発活動に基づいた,ソフトウェア革新の新たな尺度を紹介する。
リリース後2年間で、JavaScript、Python、Rubyエコシステムにまたがる33,000のユニークなパッケージから35万のユニークなリリースで、依存関係の成長とリリースの複雑さを調べます。
論文 参考訳(メタデータ) (2024-11-07T19:11:32Z) - LLMs: A Game-Changer for Software Engineers? [0.0]
GPT-3やGPT-4のような大規模言語モデル(LLM)は、従来のAIアプリケーションを超えた機能を備えた画期的なイノベーションとして登場した。
ソフトウェア開発に革命をもたらす潜在能力は、ソフトウェアエンジニアリング(SE)コミュニティを魅了している。
この記事では、LCMはソフトウェアの開発方法を変えるだけでなく、開発者の役割を再定義するものである、と論じる。
論文 参考訳(メタデータ) (2024-11-01T17:14:37Z) - The Impact of Generative AI on Collaborative Open-Source Software Development: Evidence from GitHub Copilot [4.8256226973915455]
オープンソースコミュニティにおけるソフトウェア開発における,生成的AIプログラマペアであるGitHub Copilotの役割について検討する。
Copilotはプロジェクトレベルの生産性を6.5%向上させます。
結論として、AIペアプログラマは、コードの自動化と強化に開発者にメリットをもたらしますが、ソフトウェアプロジェクトに関する人間の開発者の知識は、そのメリットを高めることができます。
論文 参考訳(メタデータ) (2024-10-02T23:26:10Z) - GenAgent: Build Collaborative AI Systems with Automated Workflow Generation -- Case Studies on ComfyUI [64.57616646552869]
本稿では、モデル、データソース、パイプラインを統合し、複雑で多様なタスクを解決するためにパフォーマンスを向上させるために使用される協調AIシステムについて検討する。
我々は、LLMベースのフレームワークであるGenAgentを紹介した。
その結果、GenAgentは実行レベルおよびタスクレベルの評価においてベースラインアプローチよりも優れていた。
論文 参考訳(メタデータ) (2024-09-02T17:44:10Z) - Does Co-Development with AI Assistants Lead to More Maintainable Code? A Registered Report [6.7428644467224]
本研究は,AIアシスタントがソフトウェア保守性に与える影響を検討することを目的とする。
フェーズ1では、開発者はAIアシスタントの助けなしに、Javaプロジェクトに新しい機能を追加する。
ランダム化されたコントロールされた試行のフェーズ2では、さまざまな開発者がランダムフェーズ1プロジェクトを進化させ、AIアシスタントなしで作業する。
論文 参考訳(メタデータ) (2024-08-20T11:48:42Z) - Agent-Driven Automatic Software Improvement [55.2480439325792]
本提案は,Large Language Models (LLMs) を利用したエージェントの展開に着目して,革新的なソリューションの探求を目的とする。
継続的学習と適応を可能にするエージェントの反復的性質は、コード生成における一般的な課題を克服するのに役立ちます。
我々は,これらのシステムにおける反復的なフィードバックを用いて,エージェントの基盤となるLLMをさらに微調整し,自動化されたソフトウェア改善のタスクに整合性を持たせることを目指している。
論文 参考訳(メタデータ) (2024-06-24T15:45:22Z) - MAP-Neo: Highly Capable and Transparent Bilingual Large Language Model Series [86.31735321970481]
私たちはMAP-Neoをオープンソースにしました。これは、4.5Tの高品質トークン上で、スクラッチからトレーニングされた7Bパラメータを持つバイリンガル言語モデルです。
MAP-Neo は,既存の最先端 LLM と比較して性能が劣る初の完全オープンソースバイリンガル LLM である。
論文 参考訳(メタデータ) (2024-05-29T17:57:16Z) - A Survey on Self-Evolution of Large Language Models [116.54238664264928]
大規模言語モデル(LLM)は、様々な分野やインテリジェントエージェントアプリケーションにおいて大きく進歩している。
この問題に対処するために、LLMが自律的に獲得し、洗練し、モデル自身によって生成された経験から学ぶことができる自己進化的アプローチが急速に成長している。
論文 参考訳(メタデータ) (2024-04-22T17:43:23Z) - A Survey of Neural Code Intelligence: Paradigms, Advances and Beyond [84.95530356322621]
この調査は、コードインテリジェンスの発展に関する体系的なレビューを示す。
50以上の代表モデルとその変種、20以上のタスクのカテゴリ、および680以上の関連する広範な研究をカバーしている。
発達軌道の考察に基づいて、コードインテリジェンスとより広範なマシンインテリジェンスとの間の新たな相乗効果について検討する。
論文 参考訳(メタデータ) (2024-03-21T08:54:56Z) - Generative AI for Pull Request Descriptions: Adoption, Impact, and
Developer Interventions [11.620351603683496]
GitHubのCopilot for Pull Requests (PR)は、PRに関連するさまざまな開発者タスクを自動化することを目的とした有望なサービスである。
本研究では,生成AIによって記述の一部が作成された18,256個のPRについて検討した。
われわれは、Copilot for PRは幼少期ではあるが、採用が著しく増加していることを示唆している。
論文 参考訳(メタデータ) (2024-02-14T06:20:57Z) - Transforming Software Development with Generative AI: Empirical Insights on Collaboration and Workflow [2.6124032579630114]
Generative AI(GenAI)は、ソフトウェア開発者などの知識労働者がタスクを解決し、ソフトウェア製品の開発に協力する方法を根本的に変えた。
ChatGPTやCopilotといったイノベーティブなツールの導入によって,さまざまな問題に対してソフトウェア開発を支援し,拡張する新たな機会が生まれました。
我々の研究は、ChatGPTがソフトウェア開発者のワークフローにおけるパラダイムシフトを表していることを明らかにしている。この技術は、開発者がより効率的に作業できるようにし、学習プロセスをスピードアップし、退屈で反復的なタスクを減らすことでモチベーションを高める。
論文 参考訳(メタデータ) (2024-02-12T12:36:29Z) - Experiential Co-Learning of Software-Developing Agents [83.34027623428096]
大規模言語モデル(LLM)は、特にソフトウェア開発において、様々な領域に大きな変化をもたらした。
本稿では,新しいLLM学習フレームワークであるExperiential Co-Learningを紹介する。
実験では、このフレームワークにより、エージェントは、目に見えないソフトウェア開発タスクをより効果的に対処できることを示した。
論文 参考訳(メタデータ) (2023-12-28T13:50:42Z) - Exploring the intersection of Generative AI and Software Development [0.0]
生成AIとソフトウェアエンジニアリングの相乗効果は、変革的なフロンティアとして現れます。
このホワイトペーパーは、探索されていない領域に展開し、生成的AI技術がソフトウェア開発にどのように革命をもたらすかを解明する。
これはステークホルダーのためのガイドとして機能し、ソフトウェア工学における生成AIの適用に関する議論と実験を促している。
論文 参考訳(メタデータ) (2023-12-21T19:23:23Z) - Octopus: Embodied Vision-Language Programmer from Environmental Feedback [58.04529328728999]
身体視覚言語モデル(VLM)は多モード認識と推論において大きな進歩を遂げた。
このギャップを埋めるために、我々は、計画と操作を接続する媒体として実行可能なコード生成を使用する、具体化された視覚言語プログラマであるOctopusを紹介した。
Octopusは、1)エージェントの視覚的およびテキスト的タスクの目的を正確に理解し、2)複雑なアクションシーケンスを定式化し、3)実行可能なコードを生成するように設計されている。
論文 参考訳(メタデータ) (2023-10-12T17:59:58Z) - SoTaNa: The Open-Source Software Development Assistant [81.86136560157266]
SoTaNaはオープンソースのソフトウェア開発アシスタントだ。
ソフトウェア工学の分野のための高品質な命令ベースのデータを生成する。
オープンソースの基盤モデルであるLLaMAを強化するためにパラメータ効率のよい微調整アプローチを採用している。
論文 参考訳(メタデータ) (2023-08-25T14:56:21Z) - The GitHub Development Workflow Automation Ecosystems [47.818229204130596]
大規模なソフトウェア開発は、非常に協力的な取り組みになっています。
この章では、開発ボットとGitHub Actionsのエコシステムについて解説する。
この領域における最先端技術に関する広範な調査を提供する。
論文 参考訳(メタデータ) (2023-05-08T15:24:23Z) - A Comprehensive Survey of AI-Generated Content (AIGC): A History of
Generative AI from GAN to ChatGPT [63.58711128819828]
ChatGPTおよびその他の生成AI(GAI)技術は、人工知能生成コンテンツ(AIGC)のカテゴリに属している。
AIGCの目標は、コンテンツ作成プロセスをより効率的かつアクセスしやすくし、高品質なコンテンツをより高速に生産できるようにすることである。
論文 参考訳(メタデータ) (2023-03-07T20:36:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。