1D-CNN-IDS: 1D CNN-based Intrusion Detection System for IIoT
- URL: http://arxiv.org/abs/2409.08529v1
- Date: Fri, 13 Sep 2024 04:22:40 GMT
- Title: 1D-CNN-IDS: 1D CNN-based Intrusion Detection System for IIoT
- Authors: Muhammad Arslan, Muhammad Mubeen, Muhammad Bilal, Saadullah Farooq Abbasi,
- Abstract summary: This study developed a one-dimensional convolutional neural network (1DCNN) algorithm for cyber-attack classification.
The proposed study achieved an accuracy of 99.90% to classify nine cyber-attacks.
- Score: 2.192061681117835
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The demand of the Internet of Things (IoT) has witnessed exponential growth. These progresses are made possible by the technological advancements in artificial intelligence, cloud computing, and edge computing. However, these advancements exhibit multiple challenges, including cyber threats, security and privacy concerns, and the risk of potential financial losses. For this reason, this study developed a computationally inexpensive one-dimensional convolutional neural network (1DCNN) algorithm for cyber-attack classification. The proposed study achieved an accuracy of 99.90% to classify nine cyber-attacks. Multiple other performance metrices have been evaluated to validate the efficacy of the proposed scheme. In addition, comparison has been done with existing state-of-the-art schemes. The findings of the proposed study can significantly contribute to the development of secure intrusion detection for IIoT systems.
Related papers
- Securing Healthcare with Deep Learning: A CNN-Based Model for medical IoT Threat Detection [0.44998333629984877]
The integration of the Internet of Medical Things (IoMT) into healthcare systems has significantly enhanced patient care.
This paper presents a novel approach based on Convolutional Neural Networks (CNNs) for detecting cyberattacks within IoMT environments.
arXiv Detail & Related papers (2024-10-26T14:27:17Z) - Enhanced Convolution Neural Network with Optimized Pooling and Hyperparameter Tuning for Network Intrusion Detection [0.0]
We propose an Enhanced Convolutional Neural Network (EnCNN) for Network Intrusion Detection Systems (NIDS)
We compare EnCNN with various machine learning algorithms, including Logistic Regression, Decision Trees, Support Vector Machines (SVM), and ensemble methods like Random Forest, AdaBoost, and Voting Ensemble.
The results show that EnCNN significantly improves detection accuracy, with a notable 10% increase over state-of-art approaches.
arXiv Detail & Related papers (2024-09-27T11:20:20Z) - Efficient Intrusion Detection: Combining $χ^2$ Feature Selection with CNN-BiLSTM on the UNSW-NB15 Dataset [2.239394800147746]
Intrusion Detection Systems (IDSs) have played a significant role in the detection and prevention of cyber-attacks in traditional computing systems.
The limited computational resources available on Internet of Things (IoT) devices pose a challenge for deploying conventional computing-based IDSs.
We present an effective IDS model that addresses this issue by combining a lightweight Convolutional Neural Network (CNN) with bidirectional Long Short-Term Memory (BiLSTM)
arXiv Detail & Related papers (2024-07-20T17:41:16Z) - FaultGuard: A Generative Approach to Resilient Fault Prediction in Smart Electrical Grids [53.2306792009435]
FaultGuard is the first framework for fault type and zone classification resilient to adversarial attacks.
We propose a low-complexity fault prediction model and an online adversarial training technique to enhance robustness.
Our model outclasses the state-of-the-art for resilient fault prediction benchmarking, with an accuracy of up to 0.958.
arXiv Detail & Related papers (2024-03-26T08:51:23Z) - When Authentication Is Not Enough: On the Security of Behavioral-Based Driver Authentication Systems [53.2306792009435]
We develop two lightweight driver authentication systems based on Random Forest and Recurrent Neural Network architectures.
We are the first to propose attacks against these systems by developing two novel evasion attacks, SMARTCAN and GANCAN.
Through our contributions, we aid practitioners in safely adopting these systems, help reduce car thefts, and enhance driver security.
arXiv Detail & Related papers (2023-06-09T14:33:26Z) - Graph Mining for Cybersecurity: A Survey [61.505995908021525]
The explosive growth of cyber attacks nowadays, such as malware, spam, and intrusions, caused severe consequences on society.
Traditional Machine Learning (ML) based methods are extensively used in detecting cyber threats, but they hardly model the correlations between real-world cyber entities.
With the proliferation of graph mining techniques, many researchers investigated these techniques for capturing correlations between cyber entities and achieving high performance.
arXiv Detail & Related papers (2023-04-02T08:43:03Z) - RL-DistPrivacy: Privacy-Aware Distributed Deep Inference for low latency
IoT systems [41.1371349978643]
We present an approach that targets the security of collaborative deep inference via re-thinking the distribution strategy.
We formulate this methodology, as an optimization, where we establish a trade-off between the latency of co-inference and the privacy-level of data.
arXiv Detail & Related papers (2022-08-27T14:50:00Z) - Robustness Evaluation of Deep Unsupervised Learning Algorithms for
Intrusion Detection Systems [0.0]
This paper evaluates the robustness of six recent deep learning algorithms for intrusion detection on contaminated data.
Our experiments suggest that the state-of-the-art algorithms used in this study are sensitive to data contamination and reveal the importance of self-defense against data perturbation.
arXiv Detail & Related papers (2022-06-25T02:28:39Z) - A cognitive based Intrusion detection system [0.0]
Intrusion detection is one of the important mechanisms that provide computer networks security.
This paper proposes a new approach based on Deep Neural Network ans Support vector machine classifier.
The proposed model predicts the attacks with better accuracy for intrusion detection rather similar methods.
arXiv Detail & Related papers (2020-05-19T13:30:30Z) - Learn2Perturb: an End-to-end Feature Perturbation Learning to Improve
Adversarial Robustness [79.47619798416194]
Learn2Perturb is an end-to-end feature perturbation learning approach for improving the adversarial robustness of deep neural networks.
Inspired by the Expectation-Maximization, an alternating back-propagation training algorithm is introduced to train the network and noise parameters consecutively.
arXiv Detail & Related papers (2020-03-02T18:27:35Z) - Adversarial vs behavioural-based defensive AI with joint, continual and
active learning: automated evaluation of robustness to deception, poisoning
and concept drift [62.997667081978825]
Recent advancements in Artificial Intelligence (AI) have brought new capabilities to behavioural analysis (UEBA) for cyber-security.
In this paper, we present a solution to effectively mitigate this attack by improving the detection process and efficiently leveraging human expertise.
arXiv Detail & Related papers (2020-01-13T13:54:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.