論文の概要: PINNfluence: Influence Functions for Physics-Informed Neural Networks
- arxiv url: http://arxiv.org/abs/2409.08958v2
- Date: Sun, 01 Dec 2024 06:47:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-03 16:55:39.608826
- Title: PINNfluence: Influence Functions for Physics-Informed Neural Networks
- Title(参考訳): PINNfluence:物理インフォームドニューラルネットワークにおける影響関数
- Authors: Jonas R. Naujoks, Aleksander Krasowski, Moritz Weckbecker, Thomas Wiegand, Sebastian Lapuschkin, Wojciech Samek, René P. Klausen,
- Abstract要約: 物理インフォームドニューラルネットワーク(PINN)は、物理科学における偏微分方程式への深層学習の柔軟で有望な応用として登場した。
本稿では,ポストホックのPINNの検証とデバッグに,インフルエンス関数(IF)の適用について検討する。
- 参考スコア(独自算出の注目度): 47.27512105490682
- License:
- Abstract: Recently, physics-informed neural networks (PINNs) have emerged as a flexible and promising application of deep learning to partial differential equations in the physical sciences. While offering strong performance and competitive inference speeds on forward and inverse problems, their black-box nature limits interpretability, particularly regarding alignment with expected physical behavior. In the present work, we explore the application of influence functions (IFs) to validate and debug PINNs post-hoc. Specifically, we apply variations of IF-based indicators to gauge the influence of different types of collocation points on the prediction of PINNs applied to a 2D Navier-Stokes fluid flow problem. Our results demonstrate how IFs can be adapted to PINNs to reveal the potential for further studies. The code is publicly available at https://github.com/aleks-krasowski/PINNfluence.
- Abstract(参考訳): 近年、物理インフォームドニューラルネットワーク(PINN)は、物理科学における偏微分方程式への深層学習の柔軟で有望な応用として出現している。
高い性能と競合推論速度を前方および逆問題で提供する一方で、ブラックボックスの性質は解釈可能性を制限する。
本研究では,ポストホックのPINNに対する影響関数(IF)の適用について検討する。
具体的には,2次元ナビエ-ストークス流問題に適用したPINNの予測に対して,異なるタイプのコロケーション点の影響を評価するために,IFベースの指標のバリエーションを適用した。
本研究は,IFsをPINNに適応させることにより,さらなる研究の可能性を明らかにするものである。
コードはhttps://github.com/aleks-krasowski/PINNfluence.comで公開されている。
関連論文リスト
- GINN-KAN: Interpretability pipelining with applications in Physics Informed Neural Networks [5.2969467015867915]
本稿では,解釈可能性パイプラインの概念を導入し,複数の解釈可能性技術を導入し,各手法の精度を向上する。
我々は、標準的なニューラルネットワークアーキテクチャに解釈可能性を導入する可能性のために選択された2つの最近のモデルを評価する。
両モデルの利点を合成する新しい解釈可能なニューラルネットワークGINN-KANを提案する。
論文 参考訳(メタデータ) (2024-08-27T04:57:53Z) - Element-wise Multiplication Based Deeper Physics-Informed Neural Networks [1.8554335256160261]
PINNは偏微分方程式(PDE)を解くための有望な枠組みである
表現力の欠如と病理疾患は、複雑なPDEにPINNを適用するのを防ぐのに役立つ。
本稿では,これらの問題を解決するために,より深い物理インフォームドニューラルネットワーク(Deeper-PINN)を提案する。
論文 参考訳(メタデータ) (2024-06-06T15:27:52Z) - Predictive Limitations of Physics-Informed Neural Networks in Vortex
Shedding [0.0]
2Dシリンダーのまわりの流れを見て、データのないPINNは渦の沈みを予測できないことに気付きました。
データ駆動型PINNは、トレーニングデータが利用可能である間のみ渦シーディングを表示するが、データフローが停止したときに定常状態のソリューションに戻す。
複素平面上のクープマン固有値の分布は、PINNが数値的に分散し、拡散することを示唆している。
論文 参考訳(メタデータ) (2023-05-31T22:59:52Z) - On the Generalization of PINNs outside the training domain and the
Hyperparameters influencing it [1.3927943269211593]
PINNは、解データを必要としない微分方程式の解をエミュレートするように訓練されたニューラルネットワークアーキテクチャである。
トレーニング領域外におけるPINN予測の挙動を実証分析する。
PINNのアルゴリズム設定が一般化のポテンシャルに影響を及ぼすかどうかを評価し,予測に対する各効果を示す。
論文 参考訳(メタデータ) (2023-02-15T09:51:56Z) - Auto-PINN: Understanding and Optimizing Physics-Informed Neural
Architecture [77.59766598165551]
物理インフォームドニューラルネットワーク(PINN)は、ディープラーニングのパワーを科学計算にもたらし、科学と工学の実践に革命をもたらしている。
本稿では,ニューラル・アーキテクチャ・サーチ(NAS)手法をPINN設計に適用したAuto-PINNを提案する。
標準PDEベンチマークを用いた包括的事前実験により、PINNの構造と性能の関係を探索することができる。
論文 参考訳(メタデータ) (2022-05-27T03:24:31Z) - Revisiting PINNs: Generative Adversarial Physics-informed Neural
Networks and Point-weighting Method [70.19159220248805]
物理インフォームドニューラルネットワーク(PINN)は、偏微分方程式(PDE)を数値的に解くためのディープラーニングフレームワークを提供する
本稿では,GA機構とPINNの構造を統合したGA-PINNを提案する。
本稿では,Adaboost法の重み付け戦略からヒントを得て,PINNのトレーニング効率を向上させるためのPW法を提案する。
論文 参考訳(メタデータ) (2022-05-18T06:50:44Z) - Scientific Machine Learning through Physics-Informed Neural Networks:
Where we are and What's next [5.956366179544257]
physic-Informed Neural Networks (PINN) は、モデル方程式を符号化するニューラルネットワーク(NN)である。
PINNは現在ではPDE、分数方程式、積分微分方程式の解法として使われている。
論文 参考訳(メタデータ) (2022-01-14T19:05:44Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
科学機械学習における最近の研究は、いわゆる物理情報ニューラルネットワーク(PINN)モデルを開発した。
既存のPINN方法論は比較的自明な問題に対して優れたモデルを学ぶことができるが、単純なPDEであっても、関連する物理現象を学習するのに失敗する可能性があることを実証する。
これらの障害モードは,NNアーキテクチャの表現力の欠如によるものではなく,PINNのセットアップによって損失状況の最適化が極めて困難であることを示す。
論文 参考訳(メタデータ) (2021-09-02T16:06:45Z) - Influence Functions in Deep Learning Are Fragile [52.31375893260445]
影響関数は、テスト時間予測におけるサンプルの効果を近似する。
影響評価は浅いネットワークでは かなり正確です
ヘッセン正則化は、高品質な影響推定を得るために重要である。
論文 参考訳(メタデータ) (2020-06-25T18:25:59Z) - Phase Detection with Neural Networks: Interpreting the Black Box [58.720142291102135]
ニューラルネットワーク(NN)は通常、予測の背後にある推論に対する洞察を妨げます。
本研究では,1次元拡張スピンレスFermi-Hubbardモデルの位相を半充足で予測するために,NNのブラックボックスをいかに影響関数が解き放つかを示す。
論文 参考訳(メタデータ) (2020-04-09T17:45:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。