論文の概要: Multiple Rotation Averaging with Constrained Reweighting Deep Matrix Factorization
- arxiv url: http://arxiv.org/abs/2409.09790v1
- Date: Sun, 15 Sep 2024 16:50:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-17 17:20:56.633592
- Title: Multiple Rotation Averaging with Constrained Reweighting Deep Matrix Factorization
- Title(参考訳): 拘束された重み付き深度行列係数による複数回転平均化
- Authors: Shiqi Li, Jihua Zhu, Yifan Xie, Naiwen Hu, Mingchen Zhu, Zhongyu Li, Di Wang,
- Abstract要約: コンピュータビジョンとロボティクス領域では、複数の回転平均化が重要な役割を果たす。
本稿では,データパターンを学習方法でマイニングするための効率的な回転平均化手法を提案する。
- 参考スコア(独自算出の注目度): 22.487393413405954
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Multiple rotation averaging plays a crucial role in computer vision and robotics domains. The conventional optimization-based methods optimize a nonlinear cost function based on certain noise assumptions, while most previous learning-based methods require ground truth labels in the supervised training process. Recognizing the handcrafted noise assumption may not be reasonable in all real-world scenarios, this paper proposes an effective rotation averaging method for mining data patterns in a learning manner while avoiding the requirement of labels. Specifically, we apply deep matrix factorization to directly solve the multiple rotation averaging problem in unconstrained linear space. For deep matrix factorization, we design a neural network model, which is explicitly low-rank and symmetric to better suit the background of multiple rotation averaging. Meanwhile, we utilize a spanning tree-based edge filtering to suppress the influence of rotation outliers. What's more, we also adopt a reweighting scheme and dynamic depth selection strategy to further improve the robustness. Our method synthesizes the merit of both optimization-based and learning-based methods. Experimental results on various datasets validate the effectiveness of our proposed method.
- Abstract(参考訳): コンピュータビジョンとロボティクス領域では、複数の回転平均化が重要な役割を果たす。
従来の最適化手法は,特定の雑音仮定に基づいて非線形コスト関数を最適化するが,従来の学習手法では教師あり学習過程において基底真理ラベルを必要とする。
本稿では,実世界のすべてのシナリオにおいて,手作り騒音の仮定が妥当ではないことを認識し,ラベルの要求を回避しつつ,学習方法でデータパターンをマイニングする効果的な回転平均化手法を提案する。
具体的には、非制約線型空間における多重回転平均化問題を直接解くために、ディープ行列分解を適用する。
深い行列係数化のために、我々は、複数回転平均化の背景に合うように、明らかに低ランクで対称なニューラルネットワークモデルを設計する。
一方,木をベースとしたエッジフィルタを用いて,回転外乱の影響を抑える。
さらに、ロバスト性をさらに向上するために、再重み付けスキームと動的深度選択戦略も採用しています。
本手法は最適化法と学習法の両方の利点を合成する。
提案手法の有効性を検証した各種データセットの実験結果を得た。
関連論文リスト
- Nonparametric Linear Feature Learning in Regression Through Regularisation [0.0]
連立線形特徴学習と非パラメトリック関数推定のための新しい手法を提案する。
代替最小化を用いることで、データを反復的に回転させ、先頭方向との整合性を改善する。
提案手法の予測リスクは,最小限の仮定と明示的なレートで最小限のリスクに収束することを確認した。
論文 参考訳(メタデータ) (2023-07-24T12:52:55Z) - Low-rank extended Kalman filtering for online learning of neural
networks from streaming data [71.97861600347959]
非定常データストリームから非線形関数のパラメータを推定するための効率的なオンライン近似ベイズ推定アルゴリズムを提案する。
この方法は拡張カルマンフィルタ (EKF) に基づいているが、新しい低ランク+斜角行列分解法を用いている。
変分推論に基づく手法とは対照的に,本手法は完全に決定論的であり,ステップサイズチューニングを必要としない。
論文 参考訳(メタデータ) (2023-05-31T03:48:49Z) - Multistage Stochastic Optimization via Kernels [3.7565501074323224]
我々は,多段階最適化問題に対する非パラメトリック,データ駆動,トラクタブルアプローチを開発した。
本稿では,提案手法が最適に近い平均性能で決定ルールを生成することを示す。
論文 参考訳(メタデータ) (2023-03-11T23:19:32Z) - Entropic Wasserstein Component Analysis [8.744017403796406]
次元減少(DR)の鍵となる要件は、元のサンプルと組込みサンプルの間にグローバルな依存関係を組み込むことである。
最適輸送(OT)と主成分分析(PCA)の原理を組み合わせる。
提案手法は, サンプルの近傍情報を自然に符号化するエントロピーOTを用いて, 復元誤差を最小化する最適線形部分空間を求める。
論文 参考訳(メタデータ) (2023-03-09T08:59:33Z) - ART-Point: Improving Rotation Robustness of Point Cloud Classifiers via
Adversarial Rotation [89.47574181669903]
本研究では, 点雲分類器の回転ロバスト性も, 対角訓練により得られることを示す。
具体的には、ART-Pointというフレームワークは、ポイントクラウドの回転を攻撃と見なしている。
最終的なロバストモデルに効率よく到達するために,高速なワンステップ最適化を提案する。
論文 参考訳(メタデータ) (2022-03-08T07:20:16Z) - Solving weakly supervised regression problem using low-rank manifold
regularization [77.34726150561087]
我々は弱い教師付き回帰問題を解く。
weakly"の下では、いくつかのトレーニングポイントではラベルが知られ、未知のものもあれば、無作為なノイズの存在やリソースの欠如などの理由によって不確かであることが分かっています。
数値的な節ではモンテカルロモデルを用いて提案手法を人工と実のデータセットに適用した。
論文 参考訳(メタデータ) (2021-04-13T23:21:01Z) - Sparse PCA via $l_{2,p}$-Norm Regularization for Unsupervised Feature
Selection [138.97647716793333]
再構成誤差を$l_2,p$ノルム正規化と組み合わせることで,単純かつ効率的な特徴選択手法を提案する。
提案する非教師付きモデルを解くための効率的な最適化アルゴリズムを提案し,アルゴリズムの収束と計算の複雑さを理論的に解析する。
論文 参考訳(メタデータ) (2020-12-29T04:08:38Z) - An Online Method for A Class of Distributionally Robust Optimization
with Non-Convex Objectives [54.29001037565384]
本稿では,オンライン分散ロバスト最適化(DRO)のクラスを解決するための実用的なオンライン手法を提案する。
本研究は,ネットワークの堅牢性向上のための機械学習における重要な応用を実証する。
論文 参考訳(メタデータ) (2020-06-17T20:19:25Z) - Continual Learning using a Bayesian Nonparametric Dictionary of Weight
Factors [75.58555462743585]
訓練されたニューラルネットワークは、シーケンシャルなタスク設定で破滅的な忘れを経験する傾向がある。
Indian Buffet Process (IBP) に基づく原則的非パラメトリック手法を提案する。
連続学習ベンチマークにおける本手法の有効性を実証し、トレーニングを通して重み要因の配分と再利用方法を分析する。
論文 参考訳(メタデータ) (2020-04-21T15:20:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。