論文の概要: Mitigating Partial Observability in Adaptive Traffic Signal Control with Transformers
- arxiv url: http://arxiv.org/abs/2409.10693v1
- Date: Mon, 16 Sep 2024 19:46:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-18 18:50:48.018657
- Title: Mitigating Partial Observability in Adaptive Traffic Signal Control with Transformers
- Title(参考訳): 変圧器を用いた適応信号制御における部分観測可能性の緩和
- Authors: Xiaoyu Wang, Ayal Taitler, Scott Sanner, Baher Abdulhai,
- Abstract要約: Reinforcement Learning (RL) は、適応的な交通信号制御(ATSC)システムを強化するための有望なアプローチとして登場した。
本稿では、部分観測可能性(PO)に対処するため、TransformerベースのコントローラをATSCシステムに統合する。
その結果,トランスフォーマーをベースとしたモデルでは,過去の観測から重要な情報を捉えることができ,制御ポリシが向上し,トラフィックフローが改善された。
- 参考スコア(独自算出の注目度): 26.1987660654434
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Efficient traffic signal control is essential for managing urban transportation, minimizing congestion, and improving safety and sustainability. Reinforcement Learning (RL) has emerged as a promising approach to enhancing adaptive traffic signal control (ATSC) systems, allowing controllers to learn optimal policies through interaction with the environment. However, challenges arise due to partial observability (PO) in traffic networks, where agents have limited visibility, hindering effectiveness. This paper presents the integration of Transformer-based controllers into ATSC systems to address PO effectively. We propose strategies to enhance training efficiency and effectiveness, demonstrating improved coordination capabilities in real-world scenarios. The results showcase the Transformer-based model's ability to capture significant information from historical observations, leading to better control policies and improved traffic flow. This study highlights the potential of leveraging the advanced Transformer architecture to enhance urban transportation management.
- Abstract(参考訳): 交通信号の効率的な制御は、都市交通の管理、混雑の最小化、安全と持続可能性の向上に不可欠である。
Reinforcement Learning(RL)は、適応的な交通信号制御(ATSC)システムを強化するための有望なアプローチとして登場し、コントローラは環境とのインタラクションを通じて最適なポリシーを学ぶことができる。
しかし、エージェントの視認性に限界があり、有効性を妨げている交通ネットワークにおける部分的可観測性(PO)が課題となっている。
本稿では,Transformer ベースのコントローラを ATSC システムに統合し,PO を効果的に処理する手法を提案する。
本研究では,実世界のシナリオにおける協調能力の向上を実証し,学習効率と有効性を向上する戦略を提案する。
その結果,トランスフォーマーをベースとしたモデルでは,過去の観測から重要な情報を捉えることができ,制御ポリシが向上し,トラフィックフローが改善された。
本研究は,トランスフォーマーの高度化による都市交通管理の強化の可能性を明らかにするものである。
関連論文リスト
- GPT-Augmented Reinforcement Learning with Intelligent Control for Vehicle Dispatching [82.19172267487998]
GARLIC: GPT拡張強化学習のフレームワーク。
本稿では,GPT強化強化学習とインテリジェント制御のフレームワークであるGARLICについて紹介する。
論文 参考訳(メタデータ) (2024-08-19T08:23:38Z) - MoveLight: Enhancing Traffic Signal Control through Movement-Centric Deep Reinforcement Learning [13.369840354712021]
MoveLightは移動中心の深層強化学習を通じて都市交通管理を強化する新しい交通信号制御システムである。
詳細なリアルタイムデータと高度な機械学習技術を活用することで、MoveLightは従来の信号制御手法の限界を克服する。
論文 参考訳(メタデータ) (2024-07-24T14:17:16Z) - Communication-Aware Reinforcement Learning for Cooperative Adaptive Cruise Control [15.31488551912888]
強化学習(RL)はCACCにおける複雑な意思決定プロセスの最適化に有効であることが証明されている。
MARLは、複数のCAV間で協調的な動作を可能にすることで、顕著な可能性を示している。
これらの課題に対処するために,コミュニケーション対応強化学習(CA-RL)を提案する。
論文 参考訳(メタデータ) (2024-07-12T03:28:24Z) - Agent-Agnostic Centralized Training for Decentralized Multi-Agent Cooperative Driving [17.659812774579756]
本研究では,自律走行車における分散型協調運転ポリシーを学習する非対称アクター・批判モデルを提案する。
マスキングを用いたアテンションニューラルネットワークを用いることで,実世界の交通動態と部分観測可能性の効率よく管理できる。
論文 参考訳(メタデータ) (2024-03-18T16:13:02Z) - A Holistic Framework Towards Vision-based Traffic Signal Control with
Microscopic Simulation [53.39174966020085]
交通信号制御(TSC)は交通渋滞を低減し、交通の流れを円滑にし、アイドリング時間を短縮し、CO2排出量を減らすために重要である。
本研究では,道路交通の流れを視覚的観察によって調節するTSCのコンピュータビジョンアプローチについて検討する。
我々は、視覚ベースのTSCとそのベンチマークに向けて、TrafficDojoと呼ばれる総合的なトラフィックシミュレーションフレームワークを導入する。
論文 参考訳(メタデータ) (2024-03-11T16:42:29Z) - DenseLight: Efficient Control for Large-scale Traffic Signals with Dense
Feedback [109.84667902348498]
交通信号制御(TSC)は、道路網における車両の平均走行時間を短縮することを目的としている。
従来のTSC手法は、深い強化学習を利用して制御ポリシーを探索する。
DenseLightは、不偏報酬関数を用いてポリシーの有効性をフィードバックする新しいRTLベースのTSC手法である。
論文 参考訳(メタデータ) (2023-06-13T05:58:57Z) - SocialLight: Distributed Cooperation Learning towards Network-Wide
Traffic Signal Control [7.387226437589183]
SocialLightは交通信号制御のための新しいマルチエージェント強化学習手法である。
地元におけるエージェントの個人的限界貢献を推定することにより、協力的な交通規制政策を学習する。
我々は,2つの交通シミュレータの標準ベンチマークにおける最先端の交通信号制御手法に対して,トレーニングネットワークをベンチマークした。
論文 参考訳(メタデータ) (2023-04-20T12:41:25Z) - Learning energy-efficient driving behaviors by imitating experts [75.12960180185105]
本稿では,コミュニケーション・センシングにおける制御戦略と現実的限界のギャップを埋める上で,模倣学習が果たす役割について考察する。
擬似学習は、車両の5%に採用されれば、局地的な観測のみを用いて、交通条件の異なるネットワークのエネルギー効率を15%向上させる政策を導出できることを示す。
論文 参考訳(メタデータ) (2022-06-28T17:08:31Z) - AI-aided Traffic Control Scheme for M2M Communications in the Internet
of Vehicles [61.21359293642559]
交通のダイナミクスと異なるIoVアプリケーションの異種要求は、既存のほとんどの研究では考慮されていない。
本稿では,ハイブリッド交通制御方式とPPO法を併用して検討する。
論文 参考訳(メタデータ) (2022-03-05T10:54:05Z) - Network-wide traffic signal control optimization using a multi-agent
deep reinforcement learning [20.385286762476436]
非効率な交通制御は、交通渋滞やエネルギー廃棄物などの多くの問題を引き起こす可能性がある。
本論文では,交通信号間の協調性を高めることで最適制御を実現するマルチエージェント強化学習手法であるKS-DDPGを提案する。
論文 参考訳(メタデータ) (2021-04-20T12:53:08Z) - MetaVIM: Meta Variationally Intrinsic Motivated Reinforcement Learning for Decentralized Traffic Signal Control [54.162449208797334]
交通信号制御は、交差点を横断する交通信号を調整し、地域や都市の交通効率を向上させることを目的としている。
近年,交通信号制御に深部強化学習(RL)を適用し,各信号がエージェントとみなされる有望な性能を示した。
本稿では,近隣情報を考慮した各交差点の分散化政策を潜時的に学習するメタ変動固有モチベーション(MetaVIM)RL法を提案する。
論文 参考訳(メタデータ) (2021-01-04T03:06:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。