Visibility Stokes parameters as a foundation for quantum information science with undetected photons
- URL: http://arxiv.org/abs/2409.10740v1
- Date: Mon, 16 Sep 2024 21:18:26 GMT
- Title: Visibility Stokes parameters as a foundation for quantum information science with undetected photons
- Authors: Jaroslav Kysela, Markus Gräfe, Jorge Fuenzalida,
- Abstract summary: We show the close relation between two very dissimilar techniques, namely the quantum state tomography of qubits and the recently developed quantum state tomography of undetected photons.
We also perform a thorough analysis of the environment of undetected photons and its role in the reconstruction process.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The phenomenon of induced coherence without induced emission allows to reconstruct the quantum state of a photon that remains undetected. The state information is transferred to its partner photon via optical coherence. Using this phenomenon, a number of established quantum information protocols could be adapted for undetected photons. Despite partial attempts, no general procedure for such adaptation exists. Here we shed light on the matter by showing the close relation between two very dissimilar techniques, namely the quantum state tomography of qubits and the recently developed quantum state tomography of undetected photons. We do so by introducing a set of parameters that quantify the coherence and that mimic the Stokes parameters known from the polarization state tomography. We also perform a thorough analysis of the environment of undetected photons and its role in the reconstruction process.
Related papers
- Non-classical excitation of a solid-state quantum emitter [0.0]
We show that a single photon is sufficient to change the state of a solid-state quantum emitter.
These results suggest future possibilities ranging from enabling quantum information transfer in a quantum network to building deterministic entangling gates for photonic quantum computing.
arXiv Detail & Related papers (2024-07-30T16:16:58Z) - Temporal quantum eraser: Fusion gates with distinguishable photons [0.0]
We show that the ideal operation of two-photon gates can be recovered from distinguishable photons.
We introduce a temporal quantum eraser between a pair of modally-impure single-photon sources.
The ability to lift the requirement for identical photons bears considerable potential in linear-optics quantum information processing.
arXiv Detail & Related papers (2024-04-01T22:44:02Z) - Quantum state tomography of undetected photons [0.0]
We introduce a quantum state tomography technique in which the state of a qubit is reconstructed, while the qubit remains undetected.
The principle underlying our method could also be applied to quantum entities other than photons.
arXiv Detail & Related papers (2022-11-18T15:44:43Z) - On-chip quantum information processing with distinguishable photons [55.41644538483948]
Multi-photon interference is at the heart of photonic quantum technologies.
Here, we experimentally demonstrate that detection can be implemented with a temporal resolution sufficient to interfere photons detuned on the scales necessary for cavity-based integrated photon sources.
We show how time-resolved detection of non-ideal photons can be used to improve the fidelity of an entangling operation and to mitigate the reduction of computational complexity in boson sampling experiments.
arXiv Detail & Related papers (2022-10-14T18:16:49Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Fundamental resolution limit of quantum imaging with undetected photons [0.0]
Quantum imaging with undetected photons relies on the principle of induced coherence without induced emission.
We investigate the transverse resolution of this non-local imaging scheme through a general formalism.
We conclude that this result is also valid for other non-local two-photon imaging schemes.
arXiv Detail & Related papers (2022-03-11T17:28:09Z) - Conditional preparation of non-Gaussian quantum optical states by
mesoscopic measurement [62.997667081978825]
Non-Gaussian states of an optical field are important as a proposed resource in quantum information applications.
We propose a novel approach involving displacement of the ancilla field into the regime where mesoscopic detectors can be used.
We conclude that states with strong Wigner negativity can be prepared at high rates by this technique under experimentally attainable conditions.
arXiv Detail & Related papers (2021-03-29T16:59:18Z) - Scalable multiphoton quantum metrology with neither pre- nor
post-selected measurements [0.0]
We experimentally demonstrate a scalable protocol for quantum-enhanced optical phase estimation.
The robustness of two-mode squeezed vacuum states against loss allows us to outperform schemes based on N00N states.
Our work is important for quantum technologies that rely on multiphoton interference.
arXiv Detail & Related papers (2020-11-04T18:11:33Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z) - Quantum metamaterial for nondestructive microwave photon counting [52.77024349608834]
We introduce a single-photon detector design operating in the microwave domain based on a weakly nonlinear metamaterial.
We show that the single-photon detection fidelity increases with the length of the metamaterial to approach one at experimentally realistic lengths.
In stark contrast to conventional photon detectors operating in the optical domain, the photon is not destroyed by the detection and the photon wavepacket is minimally disturbed.
arXiv Detail & Related papers (2020-05-13T18:00:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.