論文の概要: Quantum Kernel Learning for Small Dataset Modeling in Semiconductor Fabrication: Application to Ohmic Contact
- arxiv url: http://arxiv.org/abs/2409.10803v2
- Date: Mon, 07 Apr 2025 02:57:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-08 14:06:45.225654
- Title: Quantum Kernel Learning for Small Dataset Modeling in Semiconductor Fabrication: Application to Ohmic Contact
- Title(参考訳): 半導体製造における小さなデータセットモデリングのための量子カーネル学習:オーミックコンタクトへの応用
- Authors: Zeheng Wang, Fangzhou Wang, Liang Li, Zirui Wang, Timothy van der Laan, Ross C. C. Leon, Jing-Kai Huang, Muhammad Usman,
- Abstract要約: 半導体プロセスのモデリングに量子機械学習(QML)の最初の応用を開発した。
静的な2レベルZZ特徴写像を持つ量子カーネルベースの回帰器(SQKR)を報告する。
SQKRは、すべての評価指標で6つの主要なCMLモデルを上回った。
- 参考スコア(独自算出の注目度): 18.42230728589117
- License:
- Abstract: Complex semiconductor fabrication processes, such as Ohmic contact formation in unconventional semiconductor devices, pose significant modeling challenges due to a large number of operational variables and the difficulty of collecting large, high-quality datasets. Classical machine learning (CML) models often struggle in such scenarios, where the data is both high-dimensional and limited in quantity, leading to overfitting and reduced predictive accuracy. To address this challenge, we develop the first application of quantum machine learning (QML) to model this semiconductor process, leveraging quantum systems' capacity to efficiently capture complex correlations in high-dimensional spaces and generalize well with small datasets. Using only 159 experimental samples augmented via a variational autoencoder, we report a quantum kernel-based regressor (SQKR) with a static 2-level ZZ feature map. The SQKR consistently outperformed six mainstream CML models across all evaluation metrics, achieving the lowest mean absolute error (MAE), mean squared error (MSE), and root mean squared error (RMSE), with repeated experiments confirming its robustness. Notably, SQKR achieved an MAE of 0.314 Ohm-mm with data from experimental verification, demonstrating its ability to effectively model semiconductor fabrication processes despite limited data availability. These results highlight QML's unique capability to handle small yet high-dimensional datasets in the semiconductor industry, making it a promising alternative to classical approaches for semiconductor process modeling.
- Abstract(参考訳): 半導体デバイスにおけるオーミック接触形成のような複雑な半導体製造プロセスは、多数の操作変数と大規模で高品質なデータセットの収集が困難であるため、重要なモデリング上の課題を提起する。
古典的機械学習(CML)モデルは、データが高次元かつ限られた量であるようなシナリオでしばしば苦労し、過度に適合し、予測精度が低下する。
この課題に対処するために、この半導体プロセスをモデル化するための量子機械学習(QML)の最初の応用を開発し、量子システムのキャパシティを活用して高次元空間における複雑な相関を効率的に捕捉し、小さなデータセットでうまく一般化する。
可変オートエンコーダを用いた159個の実験試料を用いて、静的な2レベルZZ特徴写像を持つ量子カーネルベースの回帰器(SQKR)を報告する。
SQKRは、すべての評価指標で6つの主要なCMLモデルより一貫して優れており、最低平均絶対誤差(MAE)、平均二乗誤差(MSE)、ルート平均二乗誤差(RMSE)を達成し、その堅牢性を確認する実験を繰り返した。
特に、SQKRは実験的な検証から得られたデータで0.314 Ohm-mmのMAEを達成し、限られたデータ可用性にもかかわらず半導体製造プロセスを効果的にモデル化できることを実証した。
これらの結果は、半導体産業において、小さなが高次元のデータセットを扱うQMLのユニークな能力を強調しており、半導体プロセスモデリングの古典的なアプローチの代替として有望である。
関連論文リスト
- Excited-state nonadiabatic dynamics in explicit solvent using machine learned interatomic potentials [0.602276990341246]
我々はFieldSchNetを用いてQM/MM静電埋め込みを、非断熱励起状態軌跡のML/MMに置き換える。
ML/MMモデルはQM/MM表面ホッピング参照シミュレーションの電子動力学と構造再構成を再現することを示した。
論文 参考訳(メタデータ) (2025-01-28T14:14:43Z) - Discrete Randomized Smoothing Meets Quantum Computing [40.54768963869454]
重畳における入力バイナリデータの摂動をエンコードし、量子振幅推定(QAE)を用いてモデルへの呼び出し数を2次的に削減する方法を示す。
さらに、画像、グラフ、テキストに対するアプローチの広範な評価を可能にする新しいバイナリ脅威モデルを提案する。
論文 参考訳(メタデータ) (2024-08-01T20:21:52Z) - QKSAN: A Quantum Kernel Self-Attention Network [53.96779043113156]
量子カーネル法(Quantum Kernel Methods, QKM)のデータ表現能力とSAMの効率的な情報抽出能力を組み合わせた量子カーネル自己認識機構(Quantum Kernel Self-Attention Mechanism, QKSAM)を導入する。
量子カーネル自己保持ネットワーク(QKSAN)フレームワークは,DMP(Dederred Measurement Principle)と条件測定技術を巧みに組み込んだQKSAMに基づいて提案されている。
4つのQKSANサブモデルはPennyLaneとIBM Qiskitプラットフォームにデプロイされ、MNISTとFashion MNISTのバイナリ分類を実行する。
論文 参考訳(メタデータ) (2023-08-25T15:08:19Z) - Pre-training Tensor-Train Networks Facilitates Machine Learning with Variational Quantum Circuits [70.97518416003358]
変分量子回路(VQC)は、ノイズの多い中間スケール量子(NISQ)デバイス上での量子機械学習を約束する。
テンソルトレインネットワーク(TTN)はVQC表現と一般化を向上させることができるが、結果として得られるハイブリッドモデルであるTTN-VQCは、Polyak-Lojasiewicz(PL)条件による最適化の課題に直面している。
この課題を軽減するために,プレトレーニングTTNモデルとVQCを組み合わせたPre+TTN-VQCを導入する。
論文 参考訳(メタデータ) (2023-05-18T03:08:18Z) - DeePKS+ABACUS as a Bridge between Expensive Quantum Mechanical Models
and Machine Learning Potentials [9.982820888454958]
Deep Kohn-Sham (DeePKS) は密度汎関数理論に基づく機械学習(ML)ポテンシャルである。
DeePKSは高レベル量子力学(QM)法と比較して密に整合したエネルギーと力を提供する。
DeePKSモデルをトレーニングするために十分な量の高精度QMデータを生成し、さらにDeePKSモデルを使用して、はるかに多くの設定をラベル付けしてML電位をトレーニングすることができる。
論文 参考訳(メタデータ) (2022-06-21T03:24:18Z) - Direct parameter estimations from machine-learning enhanced quantum
state tomography [3.459382629188014]
機械学習による量子状態トモグラフィ(QST)は、量子状態に関する完全な情報を抽出する際の利点を実証している。
我々は,目標パラメータを直接生成することにより,高性能で軽量で容易に教師付き特性モデルを構築する。
このような特性モデルに基づく ML-QST は、ヒルベルト空間を扱う問題を回避することができるが、高い精度で特徴抽出を維持することができる。
論文 参考訳(メタデータ) (2022-03-30T15:16:02Z) - Mixed Precision Low-bit Quantization of Neural Network Language Models
for Speech Recognition [67.95996816744251]
長期間のメモリリカレントニューラルネットワーク(LSTM-RNN)とトランスフォーマーで表される最先端言語モデル(LM)は、実用アプリケーションではますます複雑で高価なものになりつつある。
現在の量子化法は、均一な精度に基づいており、量子化誤差に対するLMの異なる部分での様々な性能感度を考慮できない。
本稿では,新しい混合精度ニューラルネットワークLM量子化法を提案する。
論文 参考訳(メタデータ) (2021-11-29T12:24:02Z) - Quantum Approximate Optimization Algorithm Based Maximum Likelihood
Detection [80.28858481461418]
量子技術の最近の進歩は、ノイズの多い中間スケール量子(NISQ)デバイスへの道を開く。
量子技術の最近の進歩は、ノイズの多い中間スケール量子(NISQ)デバイスへの道を開く。
論文 参考訳(メタデータ) (2021-07-11T10:56:24Z) - Quantum-tailored machine-learning characterization of a superconducting
qubit [50.591267188664666]
我々は,量子デバイスのダイナミクスを特徴付ける手法を開発し,デバイスパラメータを学習する。
このアプローチは、数値的に生成された実験データに基づいてトレーニングされた物理に依存しないリカレントニューラルネットワークより優れている。
このデモンストレーションは、ドメイン知識を活用することで、この特徴付けタスクの正確性と効率が向上することを示す。
論文 参考訳(メタデータ) (2021-06-24T15:58:57Z) - Quaternion Factorization Machines: A Lightweight Solution to Intricate
Feature Interaction Modelling [76.89779231460193]
factorization machine(fm)は、機能間の高次インタラクションを自動的に学習し、手動の機能エンジニアリングを必要とせずに予測を行うことができる。
本研究では,スパース予測解析のためのQFM(Quaternion factorization Machine)とQNFM(Quaternion neural factorization Machine)を提案する。
論文 参考訳(メタデータ) (2021-04-05T00:02:36Z) - Predicting toxicity by quantum machine learning [11.696069523681178]
本研究では, 定量的構造活性相関に基づく221種類のフェノールの毒性予測のためのQMLモデルを開発した。
その結果、量子エンタングルメントによって強化されたデータエンコーディングは、従来のエンタングルよりも表現力が高いことが示唆された。
論文 参考訳(メタデータ) (2020-08-18T02:59:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。