Quantum Kernel Learning for Small Dataset Modeling in Semiconductor Fabrication: Application to Ohmic Contact
- URL: http://arxiv.org/abs/2409.10803v3
- Date: Wed, 28 May 2025 07:40:06 GMT
- Title: Quantum Kernel Learning for Small Dataset Modeling in Semiconductor Fabrication: Application to Ohmic Contact
- Authors: Zeheng Wang, Fangzhou Wang, Liang Li, Zirui Wang, Timothy van der Laan, Ross C. C. Leon, Jing-Kai Huang, Muhammad Usman,
- Abstract summary: We develop a quantum kernel-aligned regressor (QKAR) combining a shallow Pauli-Z feature map with a trainable quantum kernel alignment layer.<n>QKAR consistently outperforms classical baselines across multiple metrics.<n>These findings suggest that carefully constructed QML models could provide predictive advantages in data-constrained semiconductor modeling.
- Score: 18.42230728589117
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modeling complex semiconductor fabrication processes such as Ohmic contact formation remains challenging due to high-dimensional parameter spaces and limited experimental data. While classical machine learning (CML) approaches have been successful in many domains, their performance degrades in small-sample, nonlinear scenarios. In this work, we investigate quantum machine learning (QML) as an alternative, exploiting quantum kernels to capture intricate correlations from compact datasets. Using only 159 experimental GaN HEMT samples, we develop a quantum kernel-aligned regressor (QKAR) combining a shallow Pauli-Z feature map with a trainable quantum kernel alignment (QKA) layer. All models, including seven baseline CML regressors, are evaluated under a unified PCA-based preprocessing pipeline to ensure a fair comparison. QKAR consistently outperforms classical baselines across multiple metrics (MAE, MSE, RMSE), achieving a mean absolute error of 0.338 Omega mm when validated on experimental data. We further assess noise robustness and generalization through cross-validation and new device fabrication. These findings suggest that carefully constructed QML models could provide predictive advantages in data-constrained semiconductor modeling, offering a foundation for practical deployment on near-term quantum hardware. While challenges remain for both QML and CML, this study demonstrates QML's potential as a complementary approach in complex process modeling tasks.
Related papers
- Quantum-Accelerated Neural Imputation with Large Language Models (LLMs) [0.0]
This paper introduces Quantum-UnIMP, a novel framework that integrates shallow quantum circuits into an LLM-based imputation architecture.<n>Our experiments on benchmark mixed-type datasets demonstrate that Quantum-UnIMP reduces imputation error by up to 15.2% for numerical features (RMSE) and improves classification accuracy by 8.7% for categorical features (F1-Score) compared to state-of-the-art classical and LLM-based methods.
arXiv Detail & Related papers (2025-07-11T02:00:06Z) - Learning Density Functionals from Noisy Quantum Data [0.0]
noisy intermediate-scale quantum (NISQ) devices are used to generate training data for machine learning (ML) models.
We show that a neural-network ML model can successfully generalize from small datasets subject to noise typical of NISQ algorithms.
Our findings suggest a promising pathway for leveraging NISQ devices in practical quantum simulations.
arXiv Detail & Related papers (2024-09-04T17:59:55Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Discrete Randomized Smoothing Meets Quantum Computing [40.54768963869454]
We show how to encode all the perturbations of the input binary data in superposition and use Quantum Amplitude Estimation (QAE) to obtain a quadratic reduction in the number of calls to the model.
In addition, we propose a new binary threat model to allow for an extensive evaluation of our approach on images, graphs, and text.
arXiv Detail & Related papers (2024-08-01T20:21:52Z) - Federated Quantum Long Short-term Memory (FedQLSTM) [58.50321380769256]
Quantum federated learning (QFL) can facilitate collaborative learning across multiple clients using quantum machine learning (QML) models.
No prior work has focused on developing a QFL framework that utilizes temporal data to approximate functions.
A novel QFL framework that is the first to integrate quantum long short-term memory (QLSTM) models with temporal data is proposed.
arXiv Detail & Related papers (2023-12-21T21:40:47Z) - Provably Trainable Rotationally Equivariant Quantum Machine Learning [0.6435156676256051]
We introduce a family of rotationally equivariant QML models built upon the quantum Fourier transform.
We numerically test our models on a dataset of simulated scanning tunnelling microscope images of phosphorus impurities in silicon.
arXiv Detail & Related papers (2023-11-10T05:10:06Z) - Machine Learning for Practical Quantum Error Mitigation [0.0]
We show that machine learning for quantum error mitigation drastically reduces the cost of mitigation.
We propose a path toward scalable mitigation by using ML-QEM to mimic traditional mitigation methods with superior runtime efficiency.
arXiv Detail & Related papers (2023-09-29T16:17:12Z) - QKSAN: A Quantum Kernel Self-Attention Network [53.96779043113156]
A Quantum Kernel Self-Attention Mechanism (QKSAM) is introduced to combine the data representation merit of Quantum Kernel Methods (QKM) with the efficient information extraction capability of SAM.
A Quantum Kernel Self-Attention Network (QKSAN) framework is proposed based on QKSAM, which ingeniously incorporates the Deferred Measurement Principle (DMP) and conditional measurement techniques.
Four QKSAN sub-models are deployed on PennyLane and IBM Qiskit platforms to perform binary classification on MNIST and Fashion MNIST.
arXiv Detail & Related papers (2023-08-25T15:08:19Z) - Quantum Classical Algorithm for the Study of Phase Transitions in the Hubbard Model via Dynamical Mean-Field Theory [0.0]
We propose a workflow that synergizes quantum computing, many-body theory, and quantum machine learning for studying strongly correlated systems.
We generate a database of zero-temperature wavefunctions of the Hubbard model within the DMFT approximation.
We then use a QML algorithm to distinguish between the metallic phase and the Mott insulator phase to capture the metal-to-Mott insulator phase transition.
arXiv Detail & Related papers (2023-08-02T19:11:04Z) - Pre-training Tensor-Train Networks Facilitates Machine Learning with Variational Quantum Circuits [70.97518416003358]
Variational quantum circuits (VQCs) hold promise for quantum machine learning on noisy intermediate-scale quantum (NISQ) devices.
While tensor-train networks (TTNs) can enhance VQC representation and generalization, the resulting hybrid model, TTN-VQC, faces optimization challenges due to the Polyak-Lojasiewicz (PL) condition.
To mitigate this challenge, we introduce Pre+TTN-VQC, a pre-trained TTN model combined with a VQC.
arXiv Detail & Related papers (2023-05-18T03:08:18Z) - Quantum adversarial metric learning model based on triplet loss function [5.548873288570182]
We propose a quantum adversarial metric learning model based on the triplet loss function.
The model employs entanglement and interference to build superposition states for triplet samples.
Simulation results show that the QAML model can effectively distinguish samples of MNIST and Iris datasets.
arXiv Detail & Related papers (2023-03-15T00:56:31Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
We introduce the qDrift protocol, which builds random product formulas by sampling from the Hamiltonian according to the coefficients.
We show that the simulation cost can be reduced while achieving the same accuracy, by considering the individual simulation cost during the sampling stage.
Results are confirmed by numerical simulations performed on a lattice nuclear effective field theory.
arXiv Detail & Related papers (2022-12-12T15:06:32Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
We focus on the case of learning with a single qubit, using data re-uploading techniques.
We implement the different proposed formulations in toy and real-world datasets using the qiskit quantum computing SDK.
arXiv Detail & Related papers (2022-11-23T18:25:32Z) - Do Quantum Circuit Born Machines Generalize? [58.720142291102135]
We present the first work in the literature that presents the QCBM's generalization performance as an integral evaluation metric for quantum generative models.
We show that the QCBM is able to effectively learn the reweighted dataset and generate unseen samples with higher quality than those in the training set.
arXiv Detail & Related papers (2022-07-27T17:06:34Z) - DeePKS+ABACUS as a Bridge between Expensive Quantum Mechanical Models
and Machine Learning Potentials [9.982820888454958]
Deep Kohn-Sham (DeePKS) is a machine learning (ML) potential based on density functional theory (DFT)
DeePKS offers closely-matched energies and forces compared with high-level quantum mechanical (QM) method.
One can generate a decent amount of high-accuracy QM data to train a DeePKS model, and then use the DeePKS model to label a much larger amount of configurations to train a ML potential.
arXiv Detail & Related papers (2022-06-21T03:24:18Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
Multi-fidelity surrogate modeling reduces the computational cost by fusing different simulation outputs.
We propose Multi-fidelity Hierarchical Neural Processes (MF-HNP), a unified neural latent variable model for multi-fidelity surrogate modeling.
We evaluate MF-HNP on epidemiology and climate modeling tasks, achieving competitive performance in terms of accuracy and uncertainty estimation.
arXiv Detail & Related papers (2022-06-10T04:54:13Z) - Direct parameter estimations from machine-learning enhanced quantum
state tomography [3.459382629188014]
Machine-learning enhanced quantum state tomography (QST) has demonstrated its advantages in extracting complete information about the quantum states.
We develop a high-performance, lightweight, and easy-to-install supervised characteristic model by generating the target parameters directly.
Such a characteristic model-based ML-QST can avoid the problem of dealing with large Hilbert space, but keep feature extractions with high precision.
arXiv Detail & Related papers (2022-03-30T15:16:02Z) - Generalization Metrics for Practical Quantum Advantage in Generative
Models [68.8204255655161]
Generative modeling is a widely accepted natural use case for quantum computers.
We construct a simple and unambiguous approach to probe practical quantum advantage for generative modeling by measuring the algorithm's generalization performance.
Our simulation results show that our quantum-inspired models have up to a $68 times$ enhancement in generating unseen unique and valid samples.
arXiv Detail & Related papers (2022-01-21T16:35:35Z) - Mixed Precision Low-bit Quantization of Neural Network Language Models
for Speech Recognition [67.95996816744251]
State-of-the-art language models (LMs) represented by long-short term memory recurrent neural networks (LSTM-RNNs) and Transformers are becoming increasingly complex and expensive for practical applications.
Current quantization methods are based on uniform precision and fail to account for the varying performance sensitivity at different parts of LMs to quantization errors.
Novel mixed precision neural network LM quantization methods are proposed in this paper.
arXiv Detail & Related papers (2021-11-29T12:24:02Z) - Subtleties in the trainability of quantum machine learning models [0.0]
We show that gradient scaling results for Variational Quantum Algorithms can be applied to study the gradient scaling of Quantum Machine Learning models.
Our results indicate that features deemed detrimental for VQA trainability can also lead to issues such as barren plateaus in QML.
arXiv Detail & Related papers (2021-10-27T20:28:53Z) - Quantum Approximate Optimization Algorithm Based Maximum Likelihood
Detection [80.28858481461418]
Recent advances in quantum technologies pave the way for noisy intermediate-scale quantum (NISQ) devices.
Recent advances in quantum technologies pave the way for noisy intermediate-scale quantum (NISQ) devices.
arXiv Detail & Related papers (2021-07-11T10:56:24Z) - Quantum-tailored machine-learning characterization of a superconducting
qubit [50.591267188664666]
We develop an approach to characterize the dynamics of a quantum device and learn device parameters.
This approach outperforms physics-agnostic recurrent neural networks trained on numerically generated and experimental data.
This demonstration shows how leveraging domain knowledge improves the accuracy and efficiency of this characterization task.
arXiv Detail & Related papers (2021-06-24T15:58:57Z) - Improving Semiconductor Device Modeling for Electronic Design Automation
by Machine Learning Techniques [6.170514965470266]
We propose a self-augmentation strategy for improving ML-based device modeling using variational autoencoder-based techniques.
To demonstrate the effectiveness of our approach, we apply it to a deep neural network-based prediction task for the Ohmic resistance value in Gallium Nitride devices.
arXiv Detail & Related papers (2021-05-25T00:52:44Z) - Quaternion Factorization Machines: A Lightweight Solution to Intricate
Feature Interaction Modelling [76.89779231460193]
factorization machine (FM) is capable of automatically learning high-order interactions among features to make predictions without the need for manual feature engineering.
We propose the quaternion factorization machine (QFM) and quaternion neural factorization machine (QNFM) for sparse predictive analytics.
arXiv Detail & Related papers (2021-04-05T00:02:36Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
A standard approach to quantum computing is based on the idea of promoting a classically simulable and fault-tolerant set of operations.
We show how the addition of noisy magic resources allows one to boost classical quasiprobability simulations of a quantum circuit.
arXiv Detail & Related papers (2021-03-12T20:58:41Z) - Predicting toxicity by quantum machine learning [11.696069523681178]
We develop QML models for predicting the toxicity of 221 phenols on the basis of quantitative structure activity relationship.
Results suggest that our data encoding enhanced by quantum entanglement provided more expressive power than the previous ones.
arXiv Detail & Related papers (2020-08-18T02:59:40Z) - Automated discovery of a robust interatomic potential for aluminum [4.6028828826414925]
Machine learning (ML) based potentials aim for faithful emulation of quantum mechanics (QM) calculations at drastically reduced computational cost.
We present a highly automated approach to dataset construction using the principles of active learning (AL)
We demonstrate this approach by building an ML potential for aluminum (ANI-Al)
To demonstrate transferability, we perform a 1.3M atom shock simulation, and show that ANI-Al predictions agree very well with DFT calculations on local atomic environments sampled from the nonequilibrium dynamics.
arXiv Detail & Related papers (2020-03-10T19:06:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.