Axial Attention Transformer Networks: A New Frontier in Breast Cancer Detection
- URL: http://arxiv.org/abs/2409.12347v1
- Date: Wed, 18 Sep 2024 22:40:29 GMT
- Title: Axial Attention Transformer Networks: A New Frontier in Breast Cancer Detection
- Authors: Weijie He, Runyuan Bao, Yiru Cang, Jianjun Wei, Yang Zhang, Jiacheng Hu,
- Abstract summary: The authors propose a novel Transformer-based segmentation model that addresses the limitations of traditional convolutional neural networks (CNNs)
The model introduces an axial attention mechanism to enhance the computational efficiency and address the issue of global contextual information that is often overlooked by CNNs.
The proposed model aims to significantly improve the segmentation accuracy of breast cancer images, offering a more efficient and effective tool for computer-aided diagnosis.
- Score: 5.283911891304296
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper delves into the challenges and advancements in the field of medical image segmentation, particularly focusing on breast cancer diagnosis. The authors propose a novel Transformer-based segmentation model that addresses the limitations of traditional convolutional neural networks (CNNs), such as U-Net, in accurately localizing and segmenting small lesions within breast cancer images. The model introduces an axial attention mechanism to enhance the computational efficiency and address the issue of global contextual information that is often overlooked by CNNs. Additionally, the paper discusses improvements tailored to the small dataset challenge, including the incorporation of relative position information and a gated axial attention mechanism to refine the model's focus on relevant features. The proposed model aims to significantly improve the segmentation accuracy of breast cancer images, offering a more efficient and effective tool for computer-aided diagnosis.
Related papers
- EfficientNet with Hybrid Attention Mechanisms for Enhanced Breast Histopathology Classification: A Comprehensive Approach [0.0]
This paper introduces a novel approach integrating Hybrid EfficientNet models with advanced attention mechanisms to enhance feature extraction and focus on critical image regions.
We evaluate the performance of our models across multiple magnification scales using publicly available hispathology datasets.
The results are validated using metrics such as accuracy, F1-score, precision, and recall, demonstrating the clinical potential of our model in improving diagnostic accuracy.
arXiv Detail & Related papers (2024-10-29T17:56:05Z) - A Novel Approach to Chest X-ray Lung Segmentation Using U-net and Modified Convolutional Block Attention Module [0.46040036610482665]
This paper presents a novel approach for lung segmentation in chest X-ray images by integrating U-net with attention mechanisms.
The proposed method enhances the U-net architecture by incorporating a Convolutional Block Attention Module (CBAM)
The adoption of the CBAM in conjunction with the U-net architecture marks a significant advancement in the field of medical imaging.
arXiv Detail & Related papers (2024-04-22T16:33:06Z) - Harnessing The Power of Attention For Patch-Based Biomedical Image Classification [0.0]
We present a novel architecture based on self-attention mechanisms as an alternative to conventional CNNs.
We introduce the Lancoz5 technique, which adapts variable image sizes to higher resolutions.
Our methods address critical challenges faced by attention-based vision models, including inductive bias, weight sharing, receptive field limitations, and efficient data handling.
arXiv Detail & Related papers (2024-04-01T06:22:28Z) - Polar-Net: A Clinical-Friendly Model for Alzheimer's Disease Detection
in OCTA Images [53.235117594102675]
Optical Coherence Tomography Angiography is a promising tool for detecting Alzheimer's disease (AD) by imaging the retinal microvasculature.
We propose a novel deep-learning framework called Polar-Net to provide interpretable results and leverage clinical prior knowledge.
We show that Polar-Net outperforms existing state-of-the-art methods and provides more valuable pathological evidence for the association between retinal vascular changes and AD.
arXiv Detail & Related papers (2023-11-10T11:49:49Z) - Fuzzy Attention Neural Network to Tackle Discontinuity in Airway
Segmentation [67.19443246236048]
Airway segmentation is crucial for the examination, diagnosis, and prognosis of lung diseases.
Some small-sized airway branches (e.g., bronchus and terminaloles) significantly aggravate the difficulty of automatic segmentation.
This paper presents an efficient method for airway segmentation, comprising a novel fuzzy attention neural network and a comprehensive loss function.
arXiv Detail & Related papers (2022-09-05T16:38:13Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - Generative Residual Attention Network for Disease Detection [51.60842580044539]
We present a novel approach for disease generation in X-rays using a conditional generative adversarial learning.
We generate a corresponding radiology image in a target domain while preserving the identity of the patient.
We then use the generated X-ray image in the target domain to augment our training to improve the detection performance.
arXiv Detail & Related papers (2021-10-25T14:15:57Z) - RCA-IUnet: A residual cross-spatial attention guided inception U-Net
model for tumor segmentation in breast ultrasound imaging [0.6091702876917281]
The article introduces an efficient residual cross-spatial attention guided inception U-Net (RCA-IUnet) model with minimal training parameters for tumor segmentation.
The RCA-IUnet model follows U-Net topology with residual inception depth-wise separable convolution and hybrid pooling layers.
Cross-spatial attention filters are added to suppress the irrelevant features and focus on the target structure.
arXiv Detail & Related papers (2021-08-05T10:35:06Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Automatic Segmentation of Gross Target Volume of Nasopharynx Cancer
using Ensemble of Multiscale Deep Neural Networks with Spatial Attention [2.204996105506197]
We propose a 2.5D Convolutional Neural Network (CNN) to handle the difference of inplane and through-plane resolution.
We also propose a spatial attention module to enable the network to focus on small target, and use channel attention to further improve the segmentation performance.
arXiv Detail & Related papers (2021-01-27T08:20:49Z) - Stan: Small tumor-aware network for breast ultrasound image segmentation [68.8204255655161]
We propose a novel deep learning architecture called Small Tumor-Aware Network (STAN) to improve the performance of segmenting tumors with different size.
The proposed approach outperformed the state-of-the-art approaches in segmenting small breast tumors.
arXiv Detail & Related papers (2020-02-03T22:25:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.