論文の概要: Engagement, Content Quality and Ideology over Time on the Facebook URL Dataset
- arxiv url: http://arxiv.org/abs/2409.13461v1
- Date: Fri, 20 Sep 2024 12:50:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 07:04:14.219817
- Title: Engagement, Content Quality and Ideology over Time on the Facebook URL Dataset
- Title(参考訳): Facebook URLデータセットにおける時間的エンゲージメント、コンテンツ品質、イデオロギー
- Authors: Emma Fraxanet, Fabrizio Germano, Andreas Kaltenbrunner, Vicenç Gómez,
- Abstract要約: 本研究は,2017年1月から2020年12月までの米国におけるニュースURLに関するユーザエンゲージメント指標について検討した。
ニュースソースのイデオロギー的アライメントと質を,ユーザの政治的嗜好と合わせて取り入れることで,リベラル,保守的,中道的な読者を対象に,イデオロギーとニュース消費の質の重み付け平均を構築した。
両指標のトレンドには,ユーザエンゲージメントの変化に伴う2つの大きな変化がある。
- 参考スコア(独自算出の注目度): 3.443622476405787
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unpacking the relationship between the ideology of social media users and their online news consumption offers critical insight into the feedback loop between users' engagement behavior and the recommender systems' content provision. However, disentangling inherent user behavior from platform-induced influences poses significant challenges, particularly when working with datasets covering limited time periods. In this study, we conduct both aggregate and longitudinal analyses using the Facebook Privacy-Protected Full URLs Dataset, examining user engagement metrics related to news URLs in the U.S. from January 2017 to December 2020. By incorporating the ideological alignment and quality of news sources, along with users' political preferences, we construct weighted averages of ideology and quality of news consumption for liberal, conservative, and moderate audiences. This allows us to track the evolution of (i) the ideological gap between liberals and conservatives and (ii) the average quality of each group's news consumption. These metrics are linked to broader phenomena such as polarization and misinformation. We identify two significant shifts in trends for both metrics, each coinciding with changes in user engagement. Interestingly, during both inflection points, the ideological gap widens and news quality declines; however, engagement increases after the first one and decreases after the second. Finally, we contextualize these changes by discussing their potential relation to two major updates to Facebook's News Feed algorithm.
- Abstract(参考訳): ソーシャルメディア利用者のイデオロギーとオンラインニュース消費の関係を解き放つことで、ユーザのエンゲージメント行動とレコメンダシステムのコンテンツ提供とのフィードバックループに関する重要な洞察が得られる。
しかしながら、プラットフォームによって引き起こされる影響から固有のユーザの振る舞いを遠ざけることは、特に限られた期間をカバーするデータセットを扱う場合、大きな課題となる。
本研究では、2017年1月から2020年12月まで、米国におけるニュースURLに関連するユーザエンゲージメント指標を調査し、Facebook Privacy-Protected Full URLs Datasetを用いて、総括分析と縦断解析を行った。
ニュースソースのイデオロギー的アライメントと質を,ユーザの政治的嗜好と合わせて取り入れることで,リベラル,保守的,中道的な読者を対象に,イデオロギーとニュース消費の質の重み付け平均を構築した。
これにより、進化の追跡が可能になります。
一 リベラル派と保守派のイデオロギー的ギャップ
(ii)各グループのニュース消費の平均品質。
これらの指標は、偏光や誤報のようなより広い現象と関連付けられている。
両指標のトレンドには,ユーザエンゲージメントの変化に伴う2つの大きな変化がある。
両点ともイデオロギー的ギャップが拡大し,ニュース品質が低下するが,第1点以降はエンゲージメントが増加し,第2点以降は減少する。
最後に、Facebookのニュースフィードアルゴリズムの2つのメジャーアップデートとの関係について議論することで、これらの変更を文脈化します。
関連論文リスト
- Incentivizing News Consumption on Social Media Platforms Using Large Language Models and Realistic Bot Accounts [4.06613683722116]
本研究は,Twitter上での検証およびイデオロギー的にバランスの取れたニュースに対するユーザの露出とエンゲージメントを高める方法について検討する。
われわれは、スポーツ、エンターテイメント、ライフスタイルについてツイートするユーザーに対して、文脈対応で返信する28のボットを作った。
ロボットの性別による差分効果をテストするために、治療対象のユーザはランダムに、女性または男性として提示されたボットの応答を受信するように割り当てられた。
治療を受けたユーザーは、より多くのニュースアカウントをフォローし、女性のボット治療を受けたユーザーは、コントロールよりもニュースコンテンツを好む傾向にあった。
論文 参考訳(メタデータ) (2024-03-20T07:44:06Z) - News and Misinformation Consumption in Europe: A Longitudinal
Cross-Country Perspective [49.1574468325115]
本研究では,欧州4カ国における情報消費について検討した。
フランス、ドイツ、イタリア、イギリスのニュースメディアアカウントから3年間のTwitter活動を分析した。
信頼性のある情報源が情報ランドスケープを支配していることを示しているが、信頼性の低いコンテンツは依然としてすべての国に存在している。
論文 参考訳(メタデータ) (2023-11-09T16:22:10Z) - Understanding Differences in News Article Interaction Patterns on
Facebook: Public vs. Private Sharing with Varying Bias and Reliability [2.4294291235324863]
本稿では、Facebook上の公開投稿とプライベート投稿のインタラクションパターンとエンゲージメントの深さを総合的に比較する。
本研究は,様々なニュースクラスと球面における相互作用パターンの相違について明らかにした。
この研究の結果は、Facebookのコンテンツモデレーター、規制当局、政策立案者に恩恵を与え、より健康的なオンライン談話に寄与する可能性がある。
論文 参考訳(メタデータ) (2023-05-19T18:01:36Z) - Unveiling the Hidden Agenda: Biases in News Reporting and Consumption [59.55900146668931]
イタリアのワクチン論争に関する6年間のデータセットを構築し、物語と選択バイアスを特定するためにベイジアン潜在空間モデルを採用する。
バイアスとエンゲージメントの間に非線形な関係が見られ、極端な位置へのエンゲージメントが高くなった。
Twitter上でのニュース消費の分析は、同様のイデオロギー的な立場のニュースメディアの間で、一般的なオーディエンスを明らかにしている。
論文 参考訳(メタデータ) (2023-01-14T18:58:42Z) - Reaching the bubble may not be enough: news media role in online
political polarization [58.720142291102135]
分極を減らす方法は、異なる政治的指向を持つ個人に党間のニュースを分配することである。
本研究は、ブラジルとカナダにおける全国選挙の文脈において、これが成立するかどうかを考察する。
論文 参考訳(メタデータ) (2021-09-18T11:34:04Z) - News consumption and social media regulations policy [70.31753171707005]
我々は、ニュース消費とコンテンツ規制の間の相互作用を評価するために、反対のモデレーション手法であるTwitterとGabを強制した2つのソーシャルメディアを分析した。
以上の結果から,Twitterが追求するモデレーションの存在は,疑わしいコンテンツを著しく減少させることがわかった。
Gabに対する明確な規制の欠如は、ユーザが両方のタイプのコンテンツを扱う傾向を生じさせ、ディスカウント/エンドレスメントの振る舞いを考慮に入れた疑わしいコンテンツに対してわずかに好みを示す。
論文 参考訳(メタデータ) (2021-06-07T19:26:32Z) - Fringe News Networks: Dynamics of US News Viewership following the 2020
Presidential Election [22.116891169190886]
2020年11月3日の米大統領選挙以前のデータを用いて、最近の研究は、YouTubeのソーシャルメディアエコシステムを使って、米国の政治的分極の程度に関する洞察を得ることの可能性を実証している。
本稿は,1月6日に米国議会議事堂で起きた,米国大統領選挙と暴力の間の64日間における,ニュース消費者とこれまでの「侵害」報道チャネルとの関係の急激な変容を考察する。
論文 参考訳(メタデータ) (2021-01-22T03:42:36Z) - Political audience diversity and news reliability in algorithmic ranking [54.23273310155137]
本稿では,ウェブサイトのオーディエンスの政治的多様性を質の指標として活用することを提案する。
ドメインの専門家によるニュースソースの信頼性評価と6,890人の米国市民の多様なサンプルによるWebブラウジングデータを用いて、より極端な、政治的に多様性の低いWebサイトが、ジャーナリストの基準を低くしていることを示す。
論文 参考訳(メタデータ) (2020-07-16T02:13:55Z) - Echo Chambers on Social Media: A comparative analysis [64.2256216637683]
本研究では,4つのソーシャルメディアプラットフォーム上で100万ユーザが生成した100万個のコンテンツに対して,エコーチャンバーの操作的定義を導入し,大規模な比較分析を行う。
議論の的になっているトピックについてユーザの傾きを推測し、異なる特徴を分析してインタラクションネットワークを再構築する。
我々は、Facebookのようなニュースフィードアルゴリズムを実装するプラットフォームが、エコーチャンバの出現を招きかねないという仮説を支持する。
論文 参考訳(メタデータ) (2020-04-20T20:00:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。