論文の概要: Non-overlapping, Schwarz-type Domain Decomposition Method for Physics and Equality Constrained Artificial Neural Networks
- arxiv url: http://arxiv.org/abs/2409.13644v2
- Date: Tue, 12 Nov 2024 01:23:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-13 13:16:33.271752
- Title: Non-overlapping, Schwarz-type Domain Decomposition Method for Physics and Equality Constrained Artificial Neural Networks
- Title(参考訳): 物理・等質制約ニューラルネットワークのための重複しないシュワルツ型領域分割法
- Authors: Qifeng Hu, Shamsulhaq Basir, Inanc Senocak,
- Abstract要約: 一般化されたインタフェース条件を持つ非重複型シュワルツ型領域分解法を提案する。
提案手法は,各サブドメイン内の物理と等価性制約付き人工ニューラルネットワーク(PECANN)を用いている。
ドメイン分解法では、ポアソン方程式とヘルムホルツ方程式の両方の解を学ぶことができる。
- 参考スコア(独自算出の注目度): 0.24578723416255746
- License:
- Abstract: We present a non-overlapping, Schwarz-type domain decomposition method with a generalized interface condition, designed for physics-informed machine learning of partial differential equations (PDEs) in both forward and inverse contexts. Our approach employs physics and equality-constrained artificial neural networks (PECANN) within each subdomain. Unlike the original PECANN method, which relies solely on initial and boundary conditions to constrain PDEs, our method uses both boundary conditions and the governing PDE to constrain a unique interface loss function for each subdomain. This modification improves the learning of subdomain-specific interface parameters while reducing communication overhead by delaying information exchange between neighboring subdomains. To address the constrained optimization in each subdomain, we apply an augmented Lagrangian method with a conditionally adaptive update strategy, transforming the problem into an unconstrained dual optimization. A distinct advantage of our domain decomposition method is its ability to learn solutions to both Poisson's and Helmholtz equations, even in cases with high-wavenumber and complex-valued solutions. Through numerical experiments with up to 64 subdomains, we demonstrate that our method consistently generalizes well as the number of subdomains increases.
- Abstract(参考訳): 偏微分方程式(PDE)の物理インフォームド機械学習を前向きおよび逆向きの両方の文脈で行うために設計した,一般化されたインターフェース条件を持つ非重複型シュワルツ型ドメイン分解法を提案する。
提案手法は,各サブドメイン内の物理と等価性制約付き人工ニューラルネットワーク(PECANN)を用いている。
PDEを制約するために初期条件と境界条件にのみ依存するPECANN法とは異なり、本手法は境界条件と統治PDEの両方を用いて各サブドメインに固有のインタフェース損失関数を制約する。
この修正は、隣接するサブドメイン間の情報交換を遅らせることで通信オーバーヘッドを低減しつつ、サブドメイン固有のインタフェースパラメータの学習を改善する。
各サブドメインにおける制約付き最適化に対処するために、条件適応型更新戦略を付加したラグランジアン法を適用し、その問題を制約なしの双対最適化に変換する。
我々の領域分解法の明確な利点はポアソン方程式とヘルムホルツ方程式の両方の解を学ぶ能力である。
最大64個のサブドメインを用いた数値実験により,提案手法が一貫した一般化とサブドメイン数の増加を実証した。
関連論文リスト
- WANCO: Weak Adversarial Networks for Constrained Optimization problems [5.257895611010853]
まず、拡張ラグランジアン法を用いてミニマックス問題をミニマックス問題に変換する。
次に、それぞれ原始変数と双対変数を表すために、2つの(または複数の)ディープニューラルネットワークを使用します。
ニューラルネットワークのパラメータは、敵のプロセスによって訓練される。
論文 参考訳(メタデータ) (2024-07-04T05:37:48Z) - A Generalized Schwarz-type Non-overlapping Domain Decomposition Method
using Physics-constrained Neural Networks [0.9137554315375919]
ニューラルネットワークに基づくメッシュレスシュワルツ型非重複領域分解を提案する。
この方法は、ラプラス方程式とヘルムホルツ方程式の両方に適用できる。
論文 参考訳(メタデータ) (2023-07-23T21:18:04Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
本稿では,ハイパースペクトル画像のデコンボリューション問題に対処する新しい手法を提案する。
新しい最適化問題を定式化し、学習可能な正規化器をニューラルネットワークの形で活用する。
導出した反復解法は、Deep Equilibriumフレームワーク内の不動点計算問題として表現される。
論文 参考訳(メタデータ) (2023-06-10T08:25:16Z) - An adaptive augmented Lagrangian method for training physics and
equality constrained artificial neural networks [0.9137554315375919]
PECANNフレームワークを、拡張された多様な制約セットを持つ前方および逆問題の解決に適用する。
ALMは従来の定式化によってペナルティパラメータとラグランジュ乗算器のストールを更新する。
本稿では,適応的下位段階法にインスパイアされた規則に従って適応的に進化する一意のペナルティパラメータを各制約に割り当てる適応ALMを提案する。
論文 参考訳(メタデータ) (2023-06-08T03:16:21Z) - A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
我々は,ネットワークの条件が悪くなるのを防止し,パラメータ数で時間線形に動作するODEベースのIPPソルバを開発した。
このアプローチに基づく現在の手法は2つの重要な問題に悩まされていることを示す。
まず、ODEに従うと、問題の条件付けにおいて制御不能な成長が生じ、最終的に許容できないほど大きな数値誤差が生じる。
論文 参考訳(メタデータ) (2023-04-28T17:28:18Z) - Neural Basis Functions for Accelerating Solutions to High Mach Euler
Equations [63.8376359764052]
ニューラルネットワークを用いた偏微分方程式(PDE)の解法を提案する。
ニューラルネットワークの集合を縮小順序 Proper Orthogonal Decomposition (POD) に回帰する。
これらのネットワークは、所定のPDEのパラメータを取り込み、PDEに還元順序近似を計算する分岐ネットワークと組み合わせて使用される。
論文 参考訳(メタデータ) (2022-08-02T18:27:13Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Physics and Equality Constrained Artificial Neural Networks: Application
to Partial Differential Equations [1.370633147306388]
偏微分方程式(PDE)の解を学ぶために物理インフォームドニューラルネットワーク(PINN)が提案されている。
本稿では,この目的関数の定式化方法が,PINNアプローチにおける厳密な制約の源であることを示す。
本稿では,逆問題と前方問題の両方に対処可能な多目的フレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-30T05:55:35Z) - Train Once and Use Forever: Solving Boundary Value Problems in Unseen
Domains with Pre-trained Deep Learning Models [0.20999222360659606]
本稿では,ニューラルネットワークを用いて境界値問題(BVP)を解くための伝達可能なフレームワークを提案する。
まず,任意の境界条件にまたがるbvpの解を推論できるニューラルネットワークであるgfnet(emphgenomic flow network)を提案する。
そこで我々は,GFNetの推論を組み立てたりステッチしたりする新しい反復アルゴリズムである emphmosaic flow (MF) 予測器を提案する。
論文 参考訳(メタデータ) (2021-04-22T05:20:27Z) - Adaptive Subcarrier, Parameter, and Power Allocation for Partitioned
Edge Learning Over Broadband Channels [69.18343801164741]
パーティショニングエッジ学習(PARTEL)は、無線ネットワークにおいてよく知られた分散学習手法であるパラメータサーバトレーニングを実装している。
本稿では、いくつかの補助変数を導入してParticleELを用いてトレーニングできるディープニューラルネットワーク(DNN)モデルについて考察する。
論文 参考訳(メタデータ) (2020-10-08T15:27:50Z) - GACEM: Generalized Autoregressive Cross Entropy Method for Multi-Modal
Black Box Constraint Satisfaction [69.94831587339539]
本稿では,マスク付き自己回帰ニューラルネットワークを用いて解空間上の均一分布をモデル化するクロスエントロピー法(CEM)を提案する。
我々のアルゴリズムは複雑な解空間を表現でき、様々な異なる解領域を追跡できる。
論文 参考訳(メタデータ) (2020-02-17T20:21:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。