論文の概要: Non-overlapping, Schwarz-type Domain Decomposition Method for Physics and Equality Constrained Artificial Neural Networks
- arxiv url: http://arxiv.org/abs/2409.13644v2
- Date: Tue, 12 Nov 2024 01:23:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-13 13:16:33.271752
- Title: Non-overlapping, Schwarz-type Domain Decomposition Method for Physics and Equality Constrained Artificial Neural Networks
- Title(参考訳): 物理・等質制約ニューラルネットワークのための重複しないシュワルツ型領域分割法
- Authors: Qifeng Hu, Shamsulhaq Basir, Inanc Senocak,
- Abstract要約: 一般化されたインタフェース条件を持つ非重複型シュワルツ型領域分解法を提案する。
提案手法は,各サブドメイン内の物理と等価性制約付き人工ニューラルネットワーク(PECANN)を用いている。
ドメイン分解法では、ポアソン方程式とヘルムホルツ方程式の両方の解を学ぶことができる。
- 参考スコア(独自算出の注目度): 0.24578723416255746
- License:
- Abstract: We present a non-overlapping, Schwarz-type domain decomposition method with a generalized interface condition, designed for physics-informed machine learning of partial differential equations (PDEs) in both forward and inverse contexts. Our approach employs physics and equality-constrained artificial neural networks (PECANN) within each subdomain. Unlike the original PECANN method, which relies solely on initial and boundary conditions to constrain PDEs, our method uses both boundary conditions and the governing PDE to constrain a unique interface loss function for each subdomain. This modification improves the learning of subdomain-specific interface parameters while reducing communication overhead by delaying information exchange between neighboring subdomains. To address the constrained optimization in each subdomain, we apply an augmented Lagrangian method with a conditionally adaptive update strategy, transforming the problem into an unconstrained dual optimization. A distinct advantage of our domain decomposition method is its ability to learn solutions to both Poisson's and Helmholtz equations, even in cases with high-wavenumber and complex-valued solutions. Through numerical experiments with up to 64 subdomains, we demonstrate that our method consistently generalizes well as the number of subdomains increases.
- Abstract(参考訳): 偏微分方程式(PDE)の物理インフォームド機械学習を前向きおよび逆向きの両方の文脈で行うために設計した,一般化されたインターフェース条件を持つ非重複型シュワルツ型ドメイン分解法を提案する。
提案手法は,各サブドメイン内の物理と等価性制約付き人工ニューラルネットワーク(PECANN)を用いている。
PDEを制約するために初期条件と境界条件にのみ依存するPECANN法とは異なり、本手法は境界条件と統治PDEの両方を用いて各サブドメインに固有のインタフェース損失関数を制約する。
この修正は、隣接するサブドメイン間の情報交換を遅らせることで通信オーバーヘッドを低減しつつ、サブドメイン固有のインタフェースパラメータの学習を改善する。
各サブドメインにおける制約付き最適化に対処するために、条件適応型更新戦略を付加したラグランジアン法を適用し、その問題を制約なしの双対最適化に変換する。
我々の領域分解法の明確な利点はポアソン方程式とヘルムホルツ方程式の両方の解を学ぶ能力である。
最大64個のサブドメインを用いた数値実験により,提案手法が一貫した一般化とサブドメイン数の増加を実証した。
関連論文リスト
- Symmetry group based domain decomposition to enhance physics-informed neural networks for solving partial differential equations [3.3360424430642848]
我々は、リー対称性群を有するPDEの前方および逆問題を解くために、PINNを強化するための対称性群に基づく領域分解戦略を提案する。
前方問題に対して、まず対称群を配置し、フレキシブルに調整可能な既知の解情報を有する分割線を生成する。
次に,PINN法と対称性向上型PINN法を用いて,各サブドメインの解を学習し,最終的にPDEの全体解に縫合する。
論文 参考訳(メタデータ) (2024-04-29T09:27:17Z) - Multi-Grid Tensorized Fourier Neural Operator for High-Resolution PDEs [93.82811501035569]
本稿では,メモリ要求を低減し,より一般化したデータ効率・並列化可能な演算子学習手法を提案する。
MG-TFNOは、実世界の実世界の現象の局所的構造と大域的構造を活用することで、大規模な分解能にスケールする。
乱流ナビエ・ストークス方程式において150倍以上の圧縮で誤差の半分以下を達成できる優れた性能を示す。
論文 参考訳(メタデータ) (2023-09-29T20:18:52Z) - A Generalized Schwarz-type Non-overlapping Domain Decomposition Method
using Physics-constrained Neural Networks [0.9137554315375919]
ニューラルネットワークに基づくメッシュレスシュワルツ型非重複領域分解を提案する。
この方法は、ラプラス方程式とヘルムホルツ方程式の両方に適用できる。
論文 参考訳(メタデータ) (2023-07-23T21:18:04Z) - A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
我々は,ネットワークの条件が悪くなるのを防止し,パラメータ数で時間線形に動作するODEベースのIPPソルバを開発した。
このアプローチに基づく現在の手法は2つの重要な問題に悩まされていることを示す。
まず、ODEに従うと、問題の条件付けにおいて制御不能な成長が生じ、最終的に許容できないほど大きな数値誤差が生じる。
論文 参考訳(メタデータ) (2023-04-28T17:28:18Z) - ML-BPM: Multi-teacher Learning with Bidirectional Photometric Mixing for
Open Compound Domain Adaptation in Semantic Segmentation [78.19743899703052]
オープン化合物ドメイン適応(OCDA)は、ターゲットドメインを複数の未知の同質体の化合物とみなしている。
目的とするサブドメインに適応するために,双方向光度ミキシングを用いたマルチテキサフレームワークを提案する。
適応蒸留を行い、学生モデルを学習し、整合性正規化を適用して生徒の一般化を改善する。
論文 参考訳(メタデータ) (2022-07-19T03:30:48Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Physics and Equality Constrained Artificial Neural Networks: Application
to Partial Differential Equations [1.370633147306388]
偏微分方程式(PDE)の解を学ぶために物理インフォームドニューラルネットワーク(PINN)が提案されている。
本稿では,この目的関数の定式化方法が,PINNアプローチにおける厳密な制約の源であることを示す。
本稿では,逆問題と前方問題の両方に対処可能な多目的フレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-30T05:55:35Z) - Train Once and Use Forever: Solving Boundary Value Problems in Unseen
Domains with Pre-trained Deep Learning Models [0.20999222360659606]
本稿では,ニューラルネットワークを用いて境界値問題(BVP)を解くための伝達可能なフレームワークを提案する。
まず,任意の境界条件にまたがるbvpの解を推論できるニューラルネットワークであるgfnet(emphgenomic flow network)を提案する。
そこで我々は,GFNetの推論を組み立てたりステッチしたりする新しい反復アルゴリズムである emphmosaic flow (MF) 予測器を提案する。
論文 参考訳(メタデータ) (2021-04-22T05:20:27Z) - Model-Based Domain Generalization [96.84818110323518]
本稿では,モデルベースドメイン一般化問題に対する新しいアプローチを提案する。
我々のアルゴリズムは、最新のwildsベンチマークの最先端手法を最大20ポイント上回った。
論文 参考訳(メタデータ) (2021-02-23T00:59:02Z) - Cross-Domain Grouping and Alignment for Domain Adaptive Semantic
Segmentation [74.3349233035632]
深層畳み込みニューラルネットワーク(CNN)内のソースドメインとターゲットドメインにセマンティックセグメンテーションネットワークを適用する既存の技術は、対象ドメイン自身や推定カテゴリ内のクラス間変異を考慮していない。
学習可能なクラスタリングモジュールと、クロスドメイングルーピングとアライメントと呼ばれる新しいドメイン適応フレームワークを導入する。
本手法はセマンティクスセグメンテーションにおける適応性能を一貫して向上させ,様々なドメイン適応設定において最先端を上回っている。
論文 参考訳(メタデータ) (2020-12-15T11:36:21Z) - On the Convergence of Overlapping Schwarz Decomposition for Nonlinear
Optimal Control [7.856998585396421]
非線形シュワルツ問題を解くために重なり合う分解アルゴリズムの収束特性について検討する。
アルゴリズムは局所的な線形収束を示し、収束速度は重なり合うサイズで指数関数的に向上することを示す。
論文 参考訳(メタデータ) (2020-05-14T00:19:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。