論文の概要: Symmetry group based domain decomposition to enhance physics-informed neural networks for solving partial differential equations
- arxiv url: http://arxiv.org/abs/2404.18538v1
- Date: Mon, 29 Apr 2024 09:27:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-30 14:17:13.823198
- Title: Symmetry group based domain decomposition to enhance physics-informed neural networks for solving partial differential equations
- Title(参考訳): 対称性群に基づく領域分解による偏微分方程式の解法における物理インフォームドニューラルネットワークの強化
- Authors: Ye Liu, Jie-Ying Li, Li-Sheng Zhang, Lei-Lei Guo, Zhi-Yong Zhang,
- Abstract要約: 我々は、リー対称性群を有するPDEの前方および逆問題を解くために、PINNを強化するための対称性群に基づく領域分解戦略を提案する。
前方問題に対して、まず対称群を配置し、フレキシブルに調整可能な既知の解情報を有する分割線を生成する。
次に,PINN法と対称性向上型PINN法を用いて,各サブドメインの解を学習し,最終的にPDEの全体解に縫合する。
- 参考スコア(独自算出の注目度): 3.3360424430642848
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Domain decomposition provides an effective way to tackle the dilemma of physics-informed neural networks (PINN) which struggle to accurately and efficiently solve partial differential equations (PDEs) in the whole domain, but the lack of efficient tools for dealing with the interfaces between two adjacent sub-domains heavily hinders the training effects, even leads to the discontinuity of the learned solutions. In this paper, we propose a symmetry group based domain decomposition strategy to enhance the PINN for solving the forward and inverse problems of the PDEs possessing a Lie symmetry group. Specifically, for the forward problem, we first deploy the symmetry group to generate the dividing-lines having known solution information which can be adjusted flexibly and are used to divide the whole training domain into a finite number of non-overlapping sub-domains, then utilize the PINN and the symmetry-enhanced PINN methods to learn the solutions in each sub-domain and finally stitch them to the overall solution of PDEs. For the inverse problem, we first utilize the symmetry group acting on the data of the initial and boundary conditions to generate labeled data in the interior domain of PDEs and then find the undetermined parameters as well as the solution by only training the neural networks in a sub-domain. Consequently, the proposed method can predict high-accuracy solutions of PDEs which are failed by the vanilla PINN in the whole domain and the extended physics-informed neural network in the same sub-domains. Numerical results of the Korteweg-de Vries equation with a translation symmetry and the nonlinear viscous fluid equation with a scaling symmetry show that the accuracies of the learned solutions are improved largely.
- Abstract(参考訳): ドメイン分解は、ドメイン全体の偏微分方程式(PDE)を正確かつ効率的に解くのに苦労する物理情報ニューラルネットワーク(PINN)のジレンマに取り組む効果的な方法を提供するが、隣接する2つのサブドメイン間のインターフェイスを扱う効率的なツールの欠如は、トレーニング効果を著しく妨げ、さらには学習されたソリューションの不連続につながる。
本稿では、リー対称性群を有するPDEの前方および逆問題を解決するために、PINNを強化するための対称性群に基づく領域分解戦略を提案する。
具体的には、まず対称性群を展開させ、柔軟に調整可能な既知の解情報を有する分割線を生成し、トレーニング領域全体を有限個の非重複サブドメインに分割し、次に、PINNと対称性強化PINN法を用いて各サブドメインの解を学習し、最後にPDEの全体解に縫合する。
逆問題では、まず、初期条件と境界条件のデータに作用する対称性群を用いて、PDEの内部領域でラベル付きデータを生成し、その後、サブドメインでニューラルネットワークをトレーニングするだけで、未決定パラメータと解を見つける。
その結果、提案手法は、ドメイン全体のバニラPINNと、同じサブドメイン内の拡張物理インフォームドニューラルネットワークによって失敗するPDEの高精度解を予測することができる。
変換対称性を持つコルテヴェーグ・ド・ブリーズ方程式とスケーリング対称性を持つ非線形粘性流体方程式の数値結果から,学習した解の精度が大きく改善されたことが分かる。
関連論文リスト
- Non-overlapping, Schwarz-type Domain Decomposition Method for Physics and Equality Constrained Artificial Neural Networks [0.24578723416255746]
一般化されたインタフェース条件を持つ非重複型シュワルツ型領域分解法を提案する。
提案手法は,各サブドメイン内の物理と等価性制約付き人工ニューラルネットワーク(PECANN)を用いている。
ドメイン分解法では、ポアソン方程式とヘルムホルツ方程式の両方の解を学ぶことができる。
論文 参考訳(メタデータ) (2024-09-20T16:48:55Z) - RoPINN: Region Optimized Physics-Informed Neural Networks [66.38369833561039]
物理インフォームドニューラルネットワーク(PINN)は偏微分方程式(PDE)の解法として広く応用されている。
本稿では,地域最適化としての新たな訓練パラダイムを提案し,理論的に検討する。
実践的なトレーニングアルゴリズムであるRerea Optimized PINN(RoPINN)は、この新しいパラダイムからシームレスに派生している。
論文 参考訳(メタデータ) (2024-05-23T09:45:57Z) - Lie Point Symmetry and Physics Informed Networks [59.56218517113066]
本稿では、損失関数を用いて、PINNモデルが基礎となるPDEを強制しようとするのと同じように、リー点対称性をネットワークに通知するロス関数を提案する。
我々の対称性の損失は、リー群の無限小生成元がPDE解を保存することを保証する。
実験により,PDEのリー点対称性による誘導バイアスはPINNの試料効率を大幅に向上させることが示された。
論文 参考訳(メタデータ) (2023-11-07T19:07:16Z) - A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
我々は,ネットワークの条件が悪くなるのを防止し,パラメータ数で時間線形に動作するODEベースのIPPソルバを開発した。
このアプローチに基づく現在の手法は2つの重要な問題に悩まされていることを示す。
まず、ODEに従うと、問題の条件付けにおいて制御不能な成長が生じ、最終的に許容できないほど大きな数値誤差が生じる。
論文 参考訳(メタデータ) (2023-04-28T17:28:18Z) - Neural PDE Solvers for Irregular Domains [25.673617202478606]
不規則な形状の幾何学的境界を持つ領域上の偏微分方程式をニューラルネットワークで解く枠組みを提案する。
我々のネットワークは入力としてドメインの形をとり、新しい(目に見えない)不規則なドメインに一般化することができる。
論文 参考訳(メタデータ) (2022-11-07T00:00:30Z) - A mixed formulation for physics-informed neural networks as a potential
solver for engineering problems in heterogeneous domains: comparison with
finite element method [0.0]
物理インフォームドニューラルネットワーク(PINN)は、与えられた境界値問題の解を見つけることができる。
工学的問題における既存のPINNの性能を高めるために,有限要素法(FEM)からいくつかのアイデアを取り入れた。
論文 参考訳(メタデータ) (2022-06-27T08:18:08Z) - Lie Point Symmetry Data Augmentation for Neural PDE Solvers [69.72427135610106]
本稿では,ニューラルPDEソルバサンプルの複雑性を改善することにより,この問題を部分的に緩和する手法を提案する。
PDEの文脈では、データ変換の完全なリストを定量的に導き出せることが分かりました。
神経性PDEソルバサンプルの複雑さを桁違いに改善するために、どのように容易に展開できるかを示す。
論文 参考訳(メタデータ) (2022-02-15T18:43:17Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - DiffNet: Neural Field Solutions of Parametric Partial Differential
Equations [30.80582606420882]
我々は、ニューラルネットワークをトレーニングし、PDEに対するソリューションのフィールド予測を生成するメッシュベースのアプローチを検討する。
パラメトリック楕円PDE上の有限要素法(FEM)に基づく重み付きガレルキン損失関数を用いる。
PDE に対する有限要素解に展開されたメッシュ収束解析に類似した,理論的に検証し,実験により考察する。
論文 参考訳(メタデータ) (2021-10-04T17:59:18Z) - Physics and Equality Constrained Artificial Neural Networks: Application
to Partial Differential Equations [1.370633147306388]
偏微分方程式(PDE)の解を学ぶために物理インフォームドニューラルネットワーク(PINN)が提案されている。
本稿では,この目的関数の定式化方法が,PINNアプローチにおける厳密な制約の源であることを示す。
本稿では,逆問題と前方問題の両方に対処可能な多目的フレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-30T05:55:35Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
ODE/PDEを解決するためにデュアルニューラルネットワークを利用するdNNsolveを紹介します。
我々は,dNNsolveが1,2,3次元の幅広いODE/PDEを解くことができることを示す。
論文 参考訳(メタデータ) (2021-03-15T19:14:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。