On-Air Deep Learning Integrated Semantic Inference Models for Enhanced Earth Observation Satellite Networks
- URL: http://arxiv.org/abs/2409.15246v3
- Date: Fri, 1 Nov 2024 12:49:19 GMT
- Title: On-Air Deep Learning Integrated Semantic Inference Models for Enhanced Earth Observation Satellite Networks
- Authors: Hong-fu Chou, Vu Nguyen Ha, Prabhu Thiruvasagam, Thanh-Dung Le, Geoffrey Eappen, Ti Ti Nguyen, Luis M. Garces-Socarras, Jorge L. Gonzalez-Rios, Juan Carlos Merlano-Duncan, Symeon Chatzinotas,
- Abstract summary: Domain-adapted Large Language Models (LLMs) provide a solution by enabling the integration of raw and processed EO data.
This study provides a thorough examination of using semantic inference and deep learning for sophisticated EO systems.
It presents an innovative architecture for semantic communication in EO satellite networks, designed to improve data transmission efficiency.
- Score: 28.69148416385582
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Earth Observation (EO) systems are crucial for cartography, disaster surveillance, and resource administration. Nonetheless, they encounter considerable obstacles in the processing and transmission of extensive data, especially in specialized domains such as precision agriculture and real-time disaster response. Earth observation satellites, outfitted with remote sensing technology, gather data from onboard sensors and IoT-enabled terrestrial objects, delivering important information remotely. Domain-adapted Large Language Models (LLMs) provide a solution by enabling the integration of raw and processed EO data. Through domain adaptation, LLMs improve the assimilation and analysis of many data sources, tackling the intricacies of specialized datasets in agriculture and disaster response. This data synthesis, directed by LLMs, enhances the precision and pertinence of conveyed information. This study provides a thorough examination of using semantic inference and deep learning for sophisticated EO systems. It presents an innovative architecture for semantic communication in EO satellite networks, designed to improve data transmission efficiency using semantic processing methodologies. Recent advancements in onboard processing technologies enable dependable, adaptable, and energy-efficient data management in orbit. These improvements guarantee reliable performance in adverse space circumstances using radiation-hardened and reconfigurable technology. Collectively, these advancements enable next-generation satellite missions with improved processing capabilities, crucial for operational flexibility and real-time decision-making in 6G satellite communication.
Related papers
- AI-Powered Augmented Reality for Satellite Assembly, Integration and Test [2.5069344340760713]
This paper presents a technical description of the European Space Agency's (ESA) project "AI for AR in Satellite AIT"
The project combines real-time computer vision and AR systems to assist technicians during satellite assembly.
All AI models demonstrated over 70% accuracy, with the detection model exceeding 95% accuracy, indicating a high level of performance and reliability.
arXiv Detail & Related papers (2024-09-26T17:44:52Z) - A Distance Similarity-based Genetic Optimization Algorithm for Satellite Ground Network Planning Considering Feeding Mode [53.71516191515285]
The low transmission efficiency of the satellite data relay back mission has become a problem that is currently constraining the construction of the system.
We propose a distance similarity-based genetic optimization algorithm (DSGA), which considers the state characteristics between the tasks and introduces a weighted Euclidean distance method to determine the similarity between the tasks.
arXiv Detail & Related papers (2024-08-29T06:57:45Z) - Earth System Data Cubes: Avenues for advancing Earth system research [4.408949931570938]
Earth System Data Cubes ( ESDCs) have emerged as one suitable solution for transforming this flood of data into a simple yet robust format.
ESDCs achieve this by organising data into an analysis-ready format with atemporal grid.
There exist barriers to realising the full potential of data in light of novel cloud-based technologies.
arXiv Detail & Related papers (2024-08-05T09:50:16Z) - Quanv4EO: Empowering Earth Observation by means of Quanvolutional Neural Networks [62.12107686529827]
This article highlights a significant shift towards leveraging quantum computing techniques in processing large volumes of remote sensing data.
The proposed Quanv4EO model introduces a quanvolution method for preprocessing multi-dimensional EO data.
Key findings suggest that the proposed model not only maintains high precision in image classification but also shows improvements of around 5% in EO use cases.
arXiv Detail & Related papers (2024-07-24T09:11:34Z) - Leveraging Large Language Models for Integrated Satellite-Aerial-Terrestrial Networks: Recent Advances and Future Directions [47.791246017237]
Integrated satellite, aerial, and terrestrial networks (ISATNs) represent a sophisticated convergence of diverse communication technologies.
This paper explores the transformative potential of integrating Large Language Models (LLMs) into ISATNs.
arXiv Detail & Related papers (2024-07-05T15:23:43Z) - Multimodal Dataset from Harsh Sub-Terranean Environment with Aerosol
Particles for Frontier Exploration [55.41644538483948]
This paper introduces a multimodal dataset from the harsh and unstructured underground environment with aerosol particles.
It contains synchronized raw data measurements from all onboard sensors in Robot Operating System (ROS) format.
The focus of this paper is not only to capture both temporal and spatial data diversities but also to present the impact of harsh conditions on captured data.
arXiv Detail & Related papers (2023-04-27T20:21:18Z) - Olive Branch Learning: A Topology-Aware Federated Learning Framework for
Space-Air-Ground Integrated Network [19.059950250921926]
Training AI models centrally with the assistance of SAGIN faces the challenges of highly constrained network topology, inefficient data transmission, and privacy issues.
We first propose a novel topology-aware federated learning framework for the SAGIN, namely Olive Branch Learning (OBL)
We extend our OBL framework and CNASA algorithm to adapt to more complex multi-orbit satellite networks.
arXiv Detail & Related papers (2022-12-02T14:51:42Z) - A Data Cube of Big Satellite Image Time-Series for Agriculture
Monitoring [0.0]
The modernization of the Common Agricultural Policy (CAP) requires the large scale and frequent monitoring of agricultural land.
We present the Agriculture monitoring Data Cube (ADC), which is an automated, modular, end-to-end framework for discovering, pre-processing and indexing optical and Synthetic Aperture Radar (SAR) images into a multidimensional cube.
We also offer a set of powerful tools on top of the ADC, including i) the generation of analysis-ready feature spaces of big satellite data to feed downstream machine learning tasks and ii) the support of Satellite Image Time-Series (SITS) analysis via services pertinent to the monitoring
arXiv Detail & Related papers (2022-05-16T15:26:23Z) - Artificial Intelligence for Satellite Communication: A Review [91.3755431537592]
This work provides a general overview of AI, its diverse sub-fields, and its state-of-the-art algorithms.
The application of AI to a wide variety of satellite communication aspects have demonstrated excellent potential, including beam-hopping, anti-jamming, network traffic forecasting, channel modeling, telemetry mining, ionospheric scintillation detecting, interference managing, remote sensing, behavior modeling, space-air-ground integrating, and energy managing.
arXiv Detail & Related papers (2021-01-25T13:01:16Z) - Integrating LEO Satellite and UAV Relaying via Reinforcement Learning
for Non-Terrestrial Networks [51.05735925326235]
A mega-constellation of low-earth orbit (LEO) satellites has the potential to enable long-range communication with low latency.
We study the problem of forwarding packets between two faraway ground terminals, through an LEO satellite selected from an orbiting constellation.
To maximize the end-to-end data rate, the satellite association and HAP location should be optimized.
We tackle this problem using deep reinforcement learning (DRL) with a novel action dimension reduction technique.
arXiv Detail & Related papers (2020-05-26T05:39:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.