論文の概要: Ultra-low latency quantum-inspired machine learning predictors implemented on FPGA
- arxiv url: http://arxiv.org/abs/2409.16075v1
- Date: Tue, 24 Sep 2024 13:21:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-26 05:46:35.945554
- Title: Ultra-low latency quantum-inspired machine learning predictors implemented on FPGA
- Title(参考訳): FPGA上に実装された超低レイテンシ量子インスピレーション機械学習予測器
- Authors: Lorenzo Borella, Alberto Coppi, Jacopo Pazzini, Andrea Stanco, Marco Trenti, Andrea Triossi, Marco Zanetti,
- Abstract要約: ツリーネットワーク(英: Tree Networks、TTN)は、量子多体系を表現するために用いられる計算パラダイムである。
最近の研究は、機械学習(ML)タスクの実行にTNを適用する方法を示している。
本研究では、FPGA(Field-Programmable Gate Array)技術の低ハードウェアを利用して、高周波リアルタイムアプリケーションにおけるTTNの利用について検討する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Tensor Networks (TNs) are a computational paradigm used for representing quantum many-body systems. Recent works have shown how TNs can also be applied to perform Machine Learning (ML) tasks, yielding comparable results to standard supervised learning techniques.In this work, we study the use of Tree Tensor Networks (TTNs) in high-frequency real-time applications by exploiting the low-latency hardware of the Field-Programmable Gate Array (FPGA) technology. We present different implementations of TTN classifiers, capable of performing inference on classical ML datasets as well as on complex physics data. A preparatory analysis of bond dimensions and weight quantization is realized in the training phase, together with entanglement entropy and correlation measurements, that help setting the choice of the TTN architecture. The generated TTNs are then deployed on a hardware accelerator; using an FPGA integrated into a server, the inference of the TTN is completely offloaded. Eventually, a classifier for High Energy Physics (HEP) applications is implemented and executed fully pipelined with sub-microsecond latency.
- Abstract(参考訳): テンソルネットワーク(テンソルネットワーク、英: Tensor Networks)は、量子多体システムを表現するために用いられる計算パラダイムである。
近年の研究では、TNが機械学習(ML)タスクにも適用でき、標準的な教師付き学習技術に匹敵する結果が得られることが示されている。本研究では、FPGA(Field-Programmable Gate Array)技術の低遅延ハードウェアを活用して、高周波リアルタイムアプリケーションにおけるTree Tensor Networks(TTN)の使用について検討する。
本稿では,従来のMLデータセットや複雑な物理データ上での推論が可能なTTN分類器の実装について述べる。
拘束エントロピーおよび相関測定とともに、トレーニング段階で結合次元と重み量子化の予備解析が実現され、TTNアーキテクチャの選択に役立てられる。
生成されたTTNはハードウェアアクセラレータにデプロイされ、FPGAをサーバに統合することで、TTNの推論は完全にオフロードされる。
最終的に、高エネルギー物理(HEP)アプリケーションのための分類器が実装され、マイクロ秒以下のレイテンシで完全にパイプライン化される。
関連論文リスト
- AdaLog: Post-Training Quantization for Vision Transformers with Adaptive Logarithm Quantizer [54.713778961605115]
Vision Transformer (ViT) はコンピュータビジョンコミュニティにおいて最も普及しているバックボーンネットワークの1つである。
本稿では,AdaLog(Adaptive Logarithm AdaLog)量子化器を提案する。
論文 参考訳(メタデータ) (2024-07-17T18:38:48Z) - Harnessing FPGA Technology for Enhanced Biomedical Computation [0.0]
この研究は、CNN、Recurrent Neural Networks (RNN)、Long Short-Term Memory Networks (LSTMs)、Deep Belief Networks (DBNs)のような洗練されたニューラルネットワークフレームワークを掘り下げる。
レイテンシやスループットなどの性能指標を評価することにより,高度なバイオメディカルコンピューティングにおけるFPGAの有効性を示す。
論文 参考訳(メタデータ) (2023-11-21T08:51:58Z) - Exploiting FPGA Capabilities for Accelerated Biomedical Computing [0.0]
本研究では、フィールドプログラマブルゲートアレイ(FPGA)を用いたECG信号解析のための高度なニューラルネットワークアーキテクチャを提案する。
我々は、トレーニングと検証にMIT-BIH Arrhythmia Databaseを使用し、堅牢性を改善するためにガウスノイズを導入した。
この研究は最終的に、様々なアプリケーションのためのFPGA上でのニューラルネットワーク性能を最適化するためのガイドを提供する。
論文 参考訳(メタデータ) (2023-07-16T01:20:17Z) - Pre-training Tensor-Train Networks Facilitates Machine Learning with Variational Quantum Circuits [70.97518416003358]
変分量子回路(VQC)は、ノイズの多い中間スケール量子(NISQ)デバイス上での量子機械学習を約束する。
テンソルトレインネットワーク(TTN)はVQC表現と一般化を向上させることができるが、結果として得られるハイブリッドモデルであるTTN-VQCは、Polyak-Lojasiewicz(PL)条件による最適化の課題に直面している。
この課題を軽減するために,プレトレーニングTTNモデルとVQCを組み合わせたPre+TTN-VQCを導入する。
論文 参考訳(メタデータ) (2023-05-18T03:08:18Z) - End-to-end codesign of Hessian-aware quantized neural networks for FPGAs
and ASICs [49.358119307844035]
我々は、共設計ニューラルネットワーク(NN)のトレーニングと実装のためのエンドツーエンドワークフローを開発する。
これにより、ハードウェアにおける効率的なNN実装が、非専門家に、単一のオープンソースワークフローでアクセスできるようになる。
大型ハドロン衝突型加速器(LHC)の40MHz衝突速度で動作しなければならないトリガー決定を含む粒子物理学アプリケーションにおけるワークフローを実演する。
シミュレーションLHC陽子-陽子衝突における高速粒子ジェット用混合精度NNを実装した。
論文 参考訳(メタデータ) (2023-04-13T18:00:01Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
テンソルネットワーク(TN)アルゴリズムは、パラメタライズド量子回路(PQC)にマッピングできる
本稿では,現実的な量子回路を用いてTN状態を近似する新しいプロトコルを提案する。
その結果、量子回路の逐次的な成長と最適化を含む1つの特定のプロトコルが、他の全ての手法より優れていることが明らかとなった。
論文 参考訳(メタデータ) (2022-09-01T17:08:41Z) - MAPLE-X: Latency Prediction with Explicit Microprocessor Prior Knowledge [87.41163540910854]
ディープニューラルネットワーク(DNN)レイテンシのキャラクタリゼーションは、時間を要するプロセスである。
ハードウェアデバイスの事前知識とDNNアーキテクチャのレイテンシを具体化し,MAPLEを拡張したMAPLE-Xを提案する。
論文 参考訳(メタデータ) (2022-05-25T11:08:20Z) - Classical versus Quantum: comparing Tensor Network-based Quantum
Circuits on LHC data [0.0]
TNは局所交絡量子多体系を効率的に表すために設計された高次元テンソルの近似である。
古典的TNは大きな結合次元と高いヒルベルト空間写像を必要として、それらの量子対数に対して可視に作用することを示す。
次元性の向上により、古典的なTNは、非常に平坦な損失の状況につながり、勾配に基づく最適化手法の使用は極めて困難である。
論文 参考訳(メタデータ) (2022-02-21T19:00:01Z) - QTN-VQC: An End-to-End Learning framework for Quantum Neural Networks [71.14713348443465]
可変量子回路(VQC)上に量子埋め込みを行うためのトレーニング可能な量子テンソルネットワーク(QTN)を導入する。
QTNは、量子埋め込みの生成から出力測定まで、エンドツーエンドのパラメトリックモデルパイプライン、すなわちQTN-VQCを可能にする。
MNISTデータセットに対する我々の実験は、他の量子埋め込み手法に対する量子埋め込みに対するQTNの利点を実証している。
論文 参考訳(メタデータ) (2021-10-06T14:44:51Z) - Distance-Weighted Graph Neural Networks on FPGAs for Real-Time Particle
Reconstruction in High Energy Physics [11.125632758828266]
FPGA上で1$mumathrms未満のレイテンシで実行できる距離重み付きグラフネットワークの設計方法について論じる。
本研究では,粒子衝突型加速器で動作する次世代熱量計における粒子の再構成と同定に関連する代表的課題について考察する。
我々は、圧縮されたモデルをファームウェアに変換し、FPGA上で実装する。
論文 参考訳(メタデータ) (2020-08-08T21:26:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。