論文の概要: Quantum circuit for $\mathbb{Z}_3$ lattice gauge theory at nonzero baryon density
- arxiv url: http://arxiv.org/abs/2409.17349v1
- Date: Wed, 25 Sep 2024 20:49:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-30 12:15:34.900733
- Title: Quantum circuit for $\mathbb{Z}_3$ lattice gauge theory at nonzero baryon density
- Title(参考訳): 非ゼロバリオン密度における$\mathbb{Z}_3$格子ゲージ理論のための量子回路
- Authors: Yoshimasa Hidaka, Arata Yamamoto,
- Abstract要約: 格子ゲージ理論は3クォーク境界状態を持つ最も単純な離散ゲージ理論である。
ヒルベルト空間は有限次元であるため、非零バリオン密度での格子ゲージ理論の量子シミュレーションをテストするのに使うことができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: $\mathbb{Z}_3$ lattice gauge theory is the simplest discrete gauge theory with three-quark bound states, i.e., baryons. Since it has a finite-dimensional Hilbert space, it can be used for testing quantum simulation of lattice gauge theory at nonzero baryon density. We discuss global and local gauge symmetries and their importance in quantum simulation. We perform quantum emulator calculation and demonstrate how to study the ground state property of baryonic matter.
- Abstract(参考訳): $\mathbb{Z}_3$ 格子ゲージ理論は、3つのクォーク境界状態、すなわちバリオンを持つ最も単純な離散ゲージ理論である。
ヒルベルト空間は有限次元であるため、非零バリオン密度での格子ゲージ理論の量子シミュレーションをテストするのに使うことができる。
我々は,大域的および局所的なゲージ対称性とその量子シミュレーションにおける重要性について論じる。
量子エミュレータ計算を行い、バリオン物質の基底状態特性の研究方法を示す。
関連論文リスト
- Analog Quantum Simulator of a Quantum Field Theory with Fermion-Spin Systems in Silicon [34.80375275076655]
フェルミオンを量子ビットにマッピングすることは、2+1$以上の時空次元で困難である。
シリコン中のドーパントアレイを用いた固有フェルミオンスピンアナログ量子シミュレータを提案する。
論文 参考訳(メタデータ) (2024-07-03T18:00:52Z) - Quantum Gate Sets for Lattice QCD in the strong coupling limit: $N_f=1$ [0.6165163123577484]
我々は、格子量子クロマダイナミックス(LQCD)を1つの無質量スタガークォークのフレーバーで強いカップリング限界でシミュレートするために、原始的な量子ゲートセットを導出した。
この理論は、モンテカルロ法を用いて符号問題を克服できるため、非ゼロ密度の研究には興味がある。
論文 参考訳(メタデータ) (2023-08-06T19:27:14Z) - General quantum algorithms for Hamiltonian simulation with applications
to a non-Abelian lattice gauge theory [44.99833362998488]
複数の量子数の相関変化からなる相互作用のクラスを効率的にシミュレートできる量子アルゴリズムを導入する。
格子ゲージ理論は、1+1次元のSU(2)ゲージ理論であり、1つのスタッガードフェルミオンに結合する。
これらのアルゴリズムは、アベリアおよび非アベリアゲージ理論と同様に高次元理論にも適用可能であることが示されている。
論文 参考訳(メタデータ) (2022-12-28T18:56:25Z) - Measurement-based quantum simulation of Abelian lattice gauge theories [0.0]
境界線上のゲージ理論に関する決定論的ハミルトニアン量子シミュレーションを導出した。
一般化されたクラスター状態は、一般化された大域対称性に関して対称性に保護された位相秩序を持つことを示す。
論文 参考訳(メタデータ) (2022-10-19T22:14:45Z) - Entanglement Witnessing for Lattice Gauge Theories [0.0]
絡み合いは現代の量子多体物理学において中心的な役割を担っている。
格子ゲージ理論における絡み目の理論的枠組みを開発する。
2+1次元の$mathrmU(1)$格子ゲージ理論の例でこの概念を説明する。
論文 参考訳(メタデータ) (2022-07-01T18:01:21Z) - Bosonic field digitization for quantum computers [62.997667081978825]
我々は、離散化された場振幅ベースで格子ボゾン場の表現に対処する。
本稿では,エラースケーリングを予測し,効率的な量子ビット実装戦略を提案する。
論文 参考訳(メタデータ) (2021-08-24T15:30:04Z) - Photon-mediated Stroboscopic Quantum Simulation of a $\mathbb{Z}_{2}$
Lattice Gauge Theory [58.720142291102135]
格子ゲージ理論(LGT)の量子シミュレーションは、非摂動粒子と凝縮物質物理学に取り組むことを目的としている。
現在の課題の1つは、量子シミュレーション装置に自然に含まれない4体(プラケット)相互作用が現れる1+1次元を超えることである。
原子物理学の最先端技術を用いて基底状態の調製とウィルソンループの測定方法を示す。
論文 参考訳(メタデータ) (2021-07-27T18:10:08Z) - Lattice Quantum Chromodynamics and Electrodynamics on a Universal
Quantum Computer [0.033842793760651545]
量子コンピュータ上で格子ゲージ理論をシミュレートするための完全な命令バイインストラクションを示す。
任意の空間次元における格子ゲージ理論は$tildeO(T3/2N3/2Lambda/epsilon1/2)$Tゲートを用いてシミュレートできることを示す。
論文 参考訳(メタデータ) (2021-07-27T12:27:39Z) - Quantum variational approach to lattice gauge theory at nonzero density [0.0]
デジタル量子シミュレーションは、非ゼロ密度での格子ゲージ理論のために設計されている。
非ゼロ密度での基底状態を得るために、量子変分アルゴリズムを採用する。
論文 参考訳(メタデータ) (2021-04-21T17:49:32Z) - Quantum simulation of gauge theory via orbifold lattice [47.28069960496992]
普遍量子コンピュータ上で$textU(k)$ Yang-Mills理論をシミュレートするための新しいフレームワークを提案する。
本稿では,ヤン・ミルズ理論の静的特性と実時間ダイナミクスの計算への応用について論じる。
論文 参考訳(メタデータ) (2020-11-12T18:49:11Z) - Topological Quantum Gravity of the Ricci Flow [62.997667081978825]
我々は、リッチフローの幾何学理論に関連する位相量子重力理論の族を示す。
まず、BRST量子化を用いて空間計量のみに対する「原始的」トポロジカルリーフシッツ型理論を構築する。
葉保存時空対称性をゲージすることで原始理論を拡張する。
論文 参考訳(メタデータ) (2020-10-29T06:15:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。