論文の概要: Generic and Scalable Differential Equation Solver for Quantum Scientific Computing
- arxiv url: http://arxiv.org/abs/2409.18146v1
- Date: Tue, 24 Sep 2024 21:09:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-06 15:41:18.066873
- Title: Generic and Scalable Differential Equation Solver for Quantum Scientific Computing
- Title(参考訳): 量子科学計算のためのジェネリックおよびスケーラブル微分方程式解法
- Authors: Jinhwan Sul, Yan Wang,
- Abstract要約: 量子科学計算における最も重要なトピックの1つは微分方程式の解法である。
本稿では,一般化量子汎関数展開フレームワークを提案する。
一般的なQFEフレームワークを示すために、4つの微分方程式が解かれる。
- 参考スコア(独自算出の注目度): 4.067407250874754
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One of the most important topics in quantum scientific computing is solving differential equations. In this paper, generalized quantum functional expansion (QFE) framework is proposed. In the QFE framework, a functional expansion of solution is encoded into a quantum state and the time evolution of the quantum state is solved with variational quantum simulation (VQS). The quantum functional encoding supports different numerical schemes of functional expansions. The lower bound of the required number of qubits is double logarithm of the inverse error bound in the QFE framework. Furthermore, a new parallel Pauli operation strategy is proposed to significantly improve the scalability of VQS. The number of circuits in VQS is exponentially reduced to only the quadratic order of the number of ansatz parameters. Four example differential equations are solved to demonstrate the generic QFE framework.
- Abstract(参考訳): 量子科学計算における最も重要なトピックの1つは微分方程式の解法である。
本稿では,一般化量子汎関数展開(QFE)フレームワークを提案する。
QFEフレームワークでは、解の関数展開を量子状態に符号化し、量子状態の時間進化を変分量子シミュレーション(VQS)で解決する。
量子汎関数符号化は、関数展開の異なる数値スキームをサポートする。
必要なキュービット数の低い境界は、QFEフレームワークの逆誤差の二重対数である。
さらに、VQSのスケーラビリティを大幅に向上させるために、新しい並列パウリ演算戦略を提案する。
VQSの回路数は指数関数的に減少し、アンサッツパラメータの2次順序に限られる。
一般的なQFEフレームワークを示すために、4つの微分方程式が解かれる。
関連論文リスト
- Extending Quantum Perceptrons: Rydberg Devices, Multi-Class Classification, and Error Tolerance [67.77677387243135]
量子ニューロモーフィックコンピューティング(QNC)は、量子計算とニューラルネットワークを融合して、量子機械学習(QML)のためのスケーラブルで耐雑音性のあるアルゴリズムを作成する
QNCの中核は量子パーセプトロン(QP)であり、相互作用する量子ビットのアナログダイナミクスを利用して普遍的な量子計算を可能にする。
論文 参考訳(メタデータ) (2024-11-13T23:56:20Z) - Parallel Quantum Computing Simulations via Quantum Accelerator Platform Virtualization [44.99833362998488]
本稿では,量子回路実行の並列化モデルを提案する。
このモデルはバックエンドに依存しない機能を利用することができ、任意のターゲットバックエンド上で並列量子回路の実行を可能にする。
論文 参考訳(メタデータ) (2024-06-05T17:16:07Z) - Towards Quantum Computational Mechanics [1.530480694206666]
本稿では、量子コンピューティングを用いて、計算ホモジェナイゼーションにおける代表要素体積(RVE)問題を解く方法について述べる。
我々の量子RVE解法は古典解法に対して指数加速度を得る。
論文 参考訳(メタデータ) (2023-12-06T12:53:02Z) - Quantum Computing for Solid Mechanics and Structural Engineering -- a
Demonstration with Variational Quantum Eigensolver [3.8061090528695534]
変分量子アルゴリズムは、コスト関数を効率的に最適化するために重ね合わせと絡み合いの特徴を利用する。
我々は,IBM Qiskit プラットフォーム上で 5-qubit および 7-qubit 量子プロセッサ上での数値処理を実装し,実演する。
論文 参考訳(メタデータ) (2023-08-28T17:52:47Z) - QNEAT: Natural Evolution of Variational Quantum Circuit Architecture [95.29334926638462]
我々は、ニューラルネットワークの量子対する最も有望な候補として登場した変分量子回路(VQC)に注目した。
有望な結果を示す一方で、バレン高原、重みの周期性、アーキテクチャの選択など、さまざまな問題のために、VQCのトレーニングは困難である。
本稿では,VQCの重みとアーキテクチャの両方を最適化するために,自然進化にインスパイアされた勾配のないアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-04-14T08:03:20Z) - Multivariable quantum signal processing (M-QSP): prophecies of the
two-headed oracle [0.0]
最近の研究は、量子信号処理(QSP)とそのマルチキュービットリフトバージョン、量子特異値変換(QSVT)を示している。
QSVTは、ほとんどの量子アルゴリズムの表現を変換し改善する。
論文 参考訳(メタデータ) (2022-05-12T17:58:59Z) - Fundamental limitations on optimization in variational quantum
algorithms [7.165356904023871]
そのような短期量子アプリケーションを確立するための主要なパラダイムは、変分量子アルゴリズム(VQA)である。
このようなランダム回路の幅広いクラスにおいて、コスト関数の変動範囲は、高い確率で量子ビット数で指数関数的に消えることを示す。
この結果は、勾配に基づく最適化と勾配のない最適化の制約を自然に統一し、VQAのトレーニングランドスケープに余分な厳しい制約を明らかにすることができる。
論文 参考訳(メタデータ) (2022-05-10T17:14:57Z) - Q-FW: A Hybrid Classical-Quantum Frank-Wolfe for Quadratic Binary
Optimization [44.96576908957141]
本稿では,量子コンピュータ上での2次線形反復問題を解くために,フランク・ウルフアルゴリズム(Q-FW)に基づく古典量子ハイブリッドフレームワークを提案する。
論文 参考訳(メタデータ) (2022-03-23T18:00:03Z) - Adiabatic Quantum Graph Matching with Permutation Matrix Constraints [75.88678895180189]
3次元形状と画像のマッチング問題は、NPハードな置換行列制約を持つ二次代入問題(QAP)としてしばしば定式化される。
本稿では,量子ハードウェア上での効率的な実行に適した制約のない問題として,いくつかのQAPの再構成を提案する。
提案アルゴリズムは、将来の量子コンピューティングアーキテクチャにおいて、より高次元にスケールする可能性がある。
論文 参考訳(メタデータ) (2021-07-08T17:59:55Z) - VQE Method: A Short Survey and Recent Developments [5.9640499950316945]
変分量子固有解法(VQE)は、ハミルトニアンの固有値と固有値を見つけるためにハイブリッド量子古典計算法を用いる方法である。
VQEは、様々な小さな分子に対する電子的シュリンガー方程式の解法に成功している。
現代の量子コンピュータは、現在利用可能なアンサツェを用いて生成されたディープ量子回路を実行することができない。
論文 参考訳(メタデータ) (2021-03-15T16:25:36Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
本稿では、QAS(Quantum Architecture Search)と呼ばれるリソースと実行時の効率的なスキームを提案する。
QASは、よりノイズの多い量子ゲートを追加することで得られる利点と副作用のバランスをとるために、自動的にほぼ最適アンサッツを求める。
数値シミュレータと実量子ハードウェアの両方に、IBMクラウドを介してQASを実装し、データ分類と量子化学タスクを実現する。
論文 参考訳(メタデータ) (2020-10-20T12:06:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。