論文の概要: Multivariable quantum signal processing (M-QSP): prophecies of the
two-headed oracle
- arxiv url: http://arxiv.org/abs/2205.06261v2
- Date: Wed, 14 Sep 2022 07:50:19 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-13 09:28:36.592024
- Title: Multivariable quantum signal processing (M-QSP): prophecies of the
two-headed oracle
- Title(参考訳): 多変量量子信号処理(m-qsp) : 二頭オラクルの予言
- Authors: Zane M. Rossi and Isaac L. Chuang
- Abstract要約: 最近の研究は、量子信号処理(QSP)とそのマルチキュービットリフトバージョン、量子特異値変換(QSVT)を示している。
QSVTは、ほとんどの量子アルゴリズムの表現を変換し改善する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent work shows that quantum signal processing (QSP) and its multi-qubit
lifted version, quantum singular value transformation (QSVT), unify and improve
the presentation of most quantum algorithms. QSP/QSVT characterize the ability,
by alternating ans\"atze, to obliviously transform the singular values of
subsystems of unitary matrices by polynomial functions; these algorithms are
numerically stable and analytically well-understood. That said, QSP/QSVT
require consistent access to a single oracle, saying nothing about computing
joint properties of two or more oracles; these can be far cheaper to determine
given an ability to pit oracles against one another coherently.
This work introduces a corresponding theory of QSP over multiple variables:
M-QSP. Surprisingly, despite the non-existence of the fundamental theorem of
algebra for multivariable polynomials, there exist necessary and sufficient
conditions under which a desired stable multivariable polynomial transformation
is possible. Moreover, the classical subroutines used by QSP protocols survive
in the multivariable setting for non-obvious reasons, and remain numerically
stable and efficient. Up to a well-defined conjecture, we give proof that the
family of achievable multivariable transforms is as loosely constrained as
could be expected. The unique ability of M-QSP to obliviously approximate joint
functions of multiple variables coherently leads to novel speedups
incommensurate with those of other quantum algorithms, and provides a bridge
from quantum algorithms to algebraic geometry.
- Abstract(参考訳): 最近の研究は、量子信号処理(QSP)とそのマルチキュービットリフトバージョン、量子特異値変換(QSVT)が、ほとんどの量子アルゴリズムの表現を統一し改善していることを示している。
QSP/QSVT は ans\atze を交互に変換することで多項式関数によってユニタリ行列のサブシステムの特異値に変換する能力を特徴づける。
とは言っても、qsp/qsvtは2つ以上のoracleのジョイントプロパティの計算について何も言わず、単一のoracleに対して一貫性のあるアクセスを必要とします。
この研究は、複数の変数に対するQSPの対応する理論(M-QSP)を導入する。
驚くべきことに、多変数多項式に対する代数の基本定理が存在しないにもかかわらず、所望の安定多変数多項式変換が可能な必要十分条件が存在する。
さらに、QSPプロトコルで使用される古典的なサブルーチンは、不可避な理由で多変量設定で存続し、数値的に安定かつ効率的である。
よく定義された予想により、達成可能な多変数変換の族は期待できるほどゆるく制約されていることを証明できる。
M-QSPが複数の変数の共役関数を強固に近似するユニークな能力は、他の量子アルゴリズムと相容れない新しいスピードアップをもたらし、量子アルゴリズムから代数幾何学への橋渡しを提供する。
関連論文リスト
- Polynomial time constructive decision algorithm for multivariable quantum signal processing [0.7332146059733189]
マルチ変数量子信号処理(M-QSP)を提案する。
M-QSPは、各変数に対応する信号演算子と信号処理演算子をインターリーブする。
古典的アルゴリズムは、与えられたローラン対をM-QSPで実装できるかどうかを決定するために提案される。
論文 参考訳(メタデータ) (2024-10-03T09:30:35Z) - On multivariate polynomials achievable with quantum signal processing [0.9208007322096533]
量子信号処理(QSP)は、多くの既知の量子アルゴリズムを統一し、単純化することが証明されたフレームワークである。
この研究は、文献で見られるものと若干異なる形式を使い、分解性のためのより単純な必要条件を見つけるために使用する。
論文 参考訳(メタデータ) (2024-07-30T13:40:11Z) - On variants of multivariate quantum signal processing and their
characterizations [0.0]
量子信号処理(QSP)は、量子コンピューティングにおいて非常に成功したアルゴリズムプリミティブである。
本稿では,Hahの一般QSPの特性を同質な2変数(交換可能な)量子信号処理に拡張できることを示す。
また、変数の1つの次数が少なくとも 1 であるとき、別の不均一な不変量に対して同様の結果を示すが、両方の変数が次数 2 を持つ反例を構成する。
論文 参考訳(メタデータ) (2023-12-14T16:06:58Z) - Modular quantum signal processing in many variables [0.0]
モジュール型マルチインプットベースのQSPベースのスーパーオペレータは,LEGOライクなスナップで,適用する関数のレベルでのスナップが可能であることを示す。
また、ガジェットを組み立て、回路にコンパイルするためのPythonパッケージも提供します。
論文 参考訳(メタデータ) (2023-09-28T17:58:51Z) - Quantum signal processing with continuous variables [0.0]
量子特異値変換(QSVT)は、ユニタリ変換に埋め込まれた任意の線形作用素の特異値への関数の適用を可能にする。
本研究では,QSP型アンサッツを復元し,任意の変換を近似できることを示す。
本研究は,この構成の様々な実験的利用と,他のリー群への「QSP様アンゼ」の拡充の可能性について論じる。
論文 参考訳(メタデータ) (2023-04-27T17:50:16Z) - QNEAT: Natural Evolution of Variational Quantum Circuit Architecture [95.29334926638462]
我々は、ニューラルネットワークの量子対する最も有望な候補として登場した変分量子回路(VQC)に注目した。
有望な結果を示す一方で、バレン高原、重みの周期性、アーキテクチャの選択など、さまざまな問題のために、VQCのトレーニングは困難である。
本稿では,VQCの重みとアーキテクチャの両方を最適化するために,自然進化にインスパイアされた勾配のないアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-04-14T08:03:20Z) - TeD-Q: a tensor network enhanced distributed hybrid quantum machine
learning framework [59.07246314484875]
TeD-Qは、量子機械学習のためのオープンソースのソフトウェアフレームワークである。
古典的な機械学習ライブラリと量子シミュレータをシームレスに統合する。
量子回路とトレーニングの進捗をリアルタイムで視覚化できるグラフィカルモードを提供する。
論文 参考訳(メタデータ) (2023-01-13T09:35:05Z) - Oracle separations of hybrid quantum-classical circuits [68.96380145211093]
量子計算の2つのモデル: CQ_dとQC_d。
CQ_dは、d-d-deepth量子コンピュータのシナリオを何度も捉え、QC_dは測定ベースの量子計算に類似している。
CQ_dとQC_dの類似性にもかかわらず、2つのモデルは本質的にはCQ_d $nsubseteq$QC_dとQC_d $nsubseteq$CQ_dである。
論文 参考訳(メタデータ) (2022-01-06T03:10:53Z) - Variational Adiabatic Gauge Transformation on real quantum hardware for
effective low-energy Hamiltonians and accurate diagonalization [68.8204255655161]
変分アダバティックゲージ変換(VAGT)を導入する。
VAGTは、現在の量子コンピュータを用いてユニタリ回路の変動パラメータを学習できる非摂動型ハイブリッド量子アルゴリズムである。
VAGTの精度は、RigettiおよびIonQ量子コンピュータ上でのシミュレーションと同様に、トラフ数値シミュレーションで検証される。
論文 参考訳(メタデータ) (2021-11-16T20:50:08Z) - Adiabatic Quantum Graph Matching with Permutation Matrix Constraints [75.88678895180189]
3次元形状と画像のマッチング問題は、NPハードな置換行列制約を持つ二次代入問題(QAP)としてしばしば定式化される。
本稿では,量子ハードウェア上での効率的な実行に適した制約のない問題として,いくつかのQAPの再構成を提案する。
提案アルゴリズムは、将来の量子コンピューティングアーキテクチャにおいて、より高次元にスケールする可能性がある。
論文 参考訳(メタデータ) (2021-07-08T17:59:55Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
本稿では、QAS(Quantum Architecture Search)と呼ばれるリソースと実行時の効率的なスキームを提案する。
QASは、よりノイズの多い量子ゲートを追加することで得られる利点と副作用のバランスをとるために、自動的にほぼ最適アンサッツを求める。
数値シミュレータと実量子ハードウェアの両方に、IBMクラウドを介してQASを実装し、データ分類と量子化学タスクを実現する。
論文 参考訳(メタデータ) (2020-10-20T12:06:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。