論文の概要: AQMLator -- An Auto Quantum Machine Learning E-Platform
- arxiv url: http://arxiv.org/abs/2409.18338v1
- Date: Mon, 7 Oct 2024 09:20:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-06 06:50:51.888407
- Title: AQMLator -- An Auto Quantum Machine Learning E-Platform
- Title(参考訳): AQMLator - 自動量子機械学習E-プラットフォーム
- Authors: Tomasz Rybotycki, Piotr Gawron,
- Abstract要約: AQMLatorは、ユーザからの最小限の入力で、MLモデルの量子層を自動的に提案し、トレーニングすることを目的としている。
標準のMLライブラリを使用するため、既存のMLパイプラインを簡単に導入できる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A successful Machine Learning (ML) model implementation requires three main components: training dataset, suitable model architecture and training procedure. Given dataset and task, finding an appropriate model might be challenging. AutoML, a branch of ML, focuses on automatic architecture search -- a meta method that aims at moving human from ML system design process. The success of ML and the development of quantum computing (QC) in recent years led to a birth of new fascinating field called Quantum Machine Learning (QML) that, amongst others, incorporates quantum computers into ML models. In this paper we present AQMLator, an Auto Quantum Machine Learning platform that aims to automatically propose and train the quantum layers of an ML model with minimal input from the user. This way, data scientists can bypass the entry barrier for QC and use QML. AQMLator uses standard ML libraries, making it easy to introduce into existing ML pipelines.
- Abstract(参考訳): 機械学習(ML)モデル実装の成功には、トレーニングデータセット、適切なモデルアーキテクチャ、トレーニング手順の3つの主要コンポーネントが必要です。
データセットとタスクがあれば、適切なモデルを見つけることは難しいかもしれません。
MLのブランチであるAutoMLは、MLシステム設計プロセスから人間を動かすことを目的としたメタメソッドである、自動アーキテクチャ検索に焦点を当てている。
MLの成功と近年の量子コンピューティング(QC)の発展により、量子機械学習(QML)と呼ばれる新しい魅力的な分野が生まれた。
本稿では,ユーザが最小限の入力でMLモデルの量子層を自動提案し,トレーニングすることを目的とした,自動量子機械学習プラットフォームであるAQMLatorを提案する。
このようにして、データサイエンティストはQCのエントリバリアをバイパスし、QMLを使用することができる。
AQMLatorは標準のMLライブラリを使用するため、既存のMLパイプラインを簡単に導入できる。
関連論文リスト
- Quantum Machine Learning: An Interplay Between Quantum Computing and Machine Learning [54.80832749095356]
量子機械学習(QML)は、量子コンピューティングの原理と従来の機械学習を組み合わせた急速に成長する分野である。
本稿では,変分量子回路を用いてQMLアーキテクチャを開発する機械学習パラダイムの量子コンピューティングについて述べる。
論文 参考訳(メタデータ) (2024-11-14T12:27:50Z) - Quantum Machine Learning Architecture Search via Deep Reinforcement Learning [8.546707309430593]
教師付き学習タスクに適した有能なQMLモデルアーキテクチャを探索するために、深層強化学習を導入する。
我々の手法は、所定のアンザッツを使わずにQMLモデルの発見を容易にするポリシーを考案するために、RLエージェントを訓練することを含む。
提案手法は,ゲート深さを最小化しながら高い分類精度を達成できるVQCアーキテクチャの同定に成功している。
論文 参考訳(メタデータ) (2024-07-29T16:20:51Z) - Verbalized Machine Learning: Revisiting Machine Learning with Language Models [63.10391314749408]
言語化機械学習(VML)の枠組みを紹介する。
VMLはパラメータ空間を人間の解釈可能な自然言語に制限する。
我々は,VMLの有効性を実証的に検証し,VMLがより強力な解釈可能性を実現するためのステップストーンとして機能することを期待する。
論文 参考訳(メタデータ) (2024-06-06T17:59:56Z) - Position: A Call to Action for a Human-Centered AutoML Paradigm [83.78883610871867]
自動機械学習(AutoML)は、機械学習(ML)を自動かつ効率的に構成する基本的目的を中心に形成された。
AutoMLの完全な可能性を解き放つ鍵は、現在探索されていないAutoMLシステムとのユーザインタラクションの側面に対処することにある、と私たちは主張する。
論文 参考訳(メタデータ) (2024-06-05T15:05:24Z) - Feature Importance and Explainability in Quantum Machine Learning [0.0]
多くの機械学習(ML)モデルはブラックボックスモデルと呼ばれ、なぜ予測されるのかについて本当の洞察を与えていない。
本稿では、古典的MLモデルと比較して量子機械学習(QML)の特徴的重要性と説明可能性について考察する。
論文 参考訳(メタデータ) (2024-05-14T19:12:32Z) - TeD-Q: a tensor network enhanced distributed hybrid quantum machine
learning framework [59.07246314484875]
TeD-Qは、量子機械学習のためのオープンソースのソフトウェアフレームワークである。
古典的な機械学習ライブラリと量子シミュレータをシームレスに統合する。
量子回路とトレーニングの進捗をリアルタイムで視覚化できるグラフィカルモードを提供する。
論文 参考訳(メタデータ) (2023-01-13T09:35:05Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
我々は、データ再ロード技術を用いて、単一のキュービットで学習するケースに焦点を当てる。
我々は、Qiskit量子コンピューティングSDKを用いて、おもちゃと現実世界のデータセットに異なる定式化を実装した。
論文 参考訳(メタデータ) (2022-11-23T18:25:32Z) - DeePKS+ABACUS as a Bridge between Expensive Quantum Mechanical Models
and Machine Learning Potentials [9.982820888454958]
Deep Kohn-Sham (DeePKS) は密度汎関数理論に基づく機械学習(ML)ポテンシャルである。
DeePKSは高レベル量子力学(QM)法と比較して密に整合したエネルギーと力を提供する。
DeePKSモデルをトレーニングするために十分な量の高精度QMデータを生成し、さらにDeePKSモデルを使用して、はるかに多くの設定をラベル付けしてML電位をトレーニングすることができる。
論文 参考訳(メタデータ) (2022-06-21T03:24:18Z) - Study of Feature Importance for Quantum Machine Learning Models [0.0]
予測器の重要性は、古典的および量子機械学習(QML)におけるデータ前処理パイプラインの重要な部分である
この研究は、QMLモデルの特徴的重要性を探求し、彼らの古典的機械学習(CML)と対比した最初の研究である。
我々はQMLモデルを訓練し、実世界のデータセット上で古典的アルゴリズムから特徴的重要度を計算するハイブリッド量子古典的アーキテクチャを開発した。
論文 参考訳(メタデータ) (2022-02-18T15:21:47Z) - Towards AutoQML: A Cloud-Based Automated Circuit Architecture Search
Framework [0.0]
自動量子機械学習(AutoQML)への第一歩を踏み出す
本稿では,この問題の具体的記述を提案し,その後,古典的量子ハイブリッドクラウドアーキテクチャを開発する。
応用例として、量子生成適応ニューラルネットワーク(qGAN)をトレーニングし、既知の歴史的なデータ分布に従うエネルギー価格を生成する。
論文 参考訳(メタデータ) (2022-02-16T12:37:10Z) - Transfer Learning without Knowing: Reprogramming Black-box Machine
Learning Models with Scarce Data and Limited Resources [78.72922528736011]
そこで我々は,ブラックボックス・アタベラル・リプログラミング (BAR) という新しい手法を提案する。
ゼロオーダー最適化とマルチラベルマッピング技術を用いて、BARは入力出力応答のみに基づいてブラックボックスMLモデルをプログラムする。
BARは最先端の手法より優れ、バニラ対逆プログラミング法に匹敵する性能を得る。
論文 参考訳(メタデータ) (2020-07-17T01:52:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。