論文の概要: Learning force laws in many-body systems
- arxiv url: http://arxiv.org/abs/2310.05273v2
- Date: Tue, 10 Sep 2024 03:35:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-11 23:44:54.866847
- Title: Learning force laws in many-body systems
- Title(参考訳): 多体システムにおける学習力則
- Authors: Wentao Yu, Eslam Abdelaleem, Ilya Nemenman, Justin C. Burton,
- Abstract要約: 我々は、機械学習モデルが、ほこりっぽいプラズマの力の法則を推測する方法を示す。
このモデルは固有対称性、非恒等粒子を考慮し、正確な精度で粒子間の効果的な非相互力を学ぶ。
実験データから新しい物理を識別する能力は、MLを利用したアプローチが、多体システムにおける新しい科学的発見経路をどのように導くかを示す。
- 参考スコア(独自算出の注目度): 2.185577978806931
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Scientific laws describing natural systems may be more complex than our intuition can handle, thus how we discover laws must change. Machine learning (ML) models can analyze large quantities of data, but their structure should match the underlying physical constraints to provide useful insight. While progress has been made using simulated data where the underlying physics is known, training and validating ML models on experimental data requires fundamentally new approaches. Here we demonstrate and experimentally validate an ML approach that incorporates physical intuition to infer force laws in dusty plasma, a complex, many-body system. Trained on 3D particle trajectories, the model accounts for inherent symmetries, non-identical particles, and learns the effective non-reciprocal forces between particles with exquisite accuracy (R^2>0.99). We validate the model by inferring particle masses in two independent yet consistent ways. The model's accuracy enables precise measurements of particle charge and screening length, discovering violations of common theoretical assumptions. Our ability to identify new physics from experimental data demonstrates how ML-powered approaches can guide new routes of scientific discovery in many-body systems. Furthermore, we anticipate our ML approach to be a starting point for inferring laws from dynamics in a wide range of many-body systems, from colloids to living organisms.
- Abstract(参考訳): 自然システムを記述する科学的法則は、私たちの直観が扱えるものよりも複雑である可能性がある。
機械学習(ML)モデルは大量のデータを分析できるが、その構造は基礎となる物理的制約と一致して有用な洞察を提供する必要がある。
基礎となる物理が知られているシミュレーションデータを用いて、進歩が進んでいるが、実験データ上でのMLモデルのトレーニングと検証には、根本的に新しいアプローチが必要である。
ここでは,複雑な多体系であるほこり質プラズマにおける力法則を推論するための物理的直観を取り入れたMLアプローチを実証し,実験的に検証する。
モデルは3次元粒子軌道で訓練され、固有対称性、非恒等粒子を考慮に入れ、正確な精度で粒子間の効果的な非相互力(R^2>0.99)を学習する。
2つの独立して一貫した方法で粒子質量を推定することでモデルを検証する。
モデルの精度は、粒子電荷とスクリーニング長さの正確な測定を可能にし、一般的な理論的仮定の違反を発見する。
実験データから新しい物理を識別する能力は、MLを利用したアプローチが、多体システムにおける新しい科学的発見経路をどのように導くかを示す。
さらに,我々のMLアプローチは,コロイドから生物まで幅広い多体系の力学から法則を推論する出発点となると予測している。
関連論文リスト
- Scientific Machine Learning Seismology [0.0]
科学機械学習(SciML)は、機械学習、特にディープラーニングと物理理論を統合し、複雑な自然現象を理解し予測する学際的な研究分野である。
PINNとニューラル演算子(NO)はSciMLの2つの一般的な方法である。
PINNの使用は、微分方程式の同時解、未決定系の推論、物理学に基づく正規化などの分野に拡大している。
論文 参考訳(メタデータ) (2024-09-27T02:27:42Z) - Large language models, physics-based modeling, experimental measurements: the trinity of data-scarce learning of polymer properties [10.955525128731654]
大規模言語モデル(LLM)は、評価、分析、設計のための高速で正確な物質モデリングパラダイムとして約束される。
データ不足の病理に対処する物理ベースのトレーニングパイプラインを提案する。
論文 参考訳(メタデータ) (2024-07-03T02:57:40Z) - A Multi-Grained Symmetric Differential Equation Model for Learning Protein-Ligand Binding Dynamics [73.35846234413611]
薬物発見において、分子動力学(MD)シミュレーションは、結合親和性を予測し、輸送特性を推定し、ポケットサイトを探索する強力なツールを提供する。
我々は,数値MDを容易にし,タンパク質-リガンド結合ダイナミクスの正確なシミュレーションを提供する,最初の機械学習サロゲートであるNeuralMDを提案する。
従来の数値MDシミュレーションと比較して1K$times$ Speedupを実現することにより,NeuralMDの有効性と有効性を示す。
論文 参考訳(メタデータ) (2024-01-26T09:35:17Z) - Accurate machine learning force fields via experimental and simulation
data fusion [0.0]
機械学習(ML)ベースの力場は、量子レベルの精度で古典的原子間ポテンシャルのスケールにまたがる能力のために、ますます関心が高まりつつある。
ここでは、密度汎関数理論(DFT)計算と実験的に測定された力学特性と格子パラメータの両方を活用して、チタンのMLポテンシャルを訓練する。
融合したデータ学習戦略は、全ての対象目標を同時に満たすことができ、結果として、単一のソースデータで訓練されたモデルと比較して高い精度の分子モデルが得られることを実証する。
論文 参考訳(メタデータ) (2023-08-17T18:22:19Z) - Learning Neural Constitutive Laws From Motion Observations for
Generalizable PDE Dynamics [97.38308257547186]
多くのNNアプローチは、支配的PDEと物質モデルの両方を暗黙的にモデル化するエンドツーエンドモデルを学ぶ。
PDEの管理はよく知られており、学習よりも明示的に実施されるべきである、と私たちは主張する。
そこで我々は,ネットワークアーキテクチャを利用したニューラル構成則(Neural Constitutive Laws,NCLaw)と呼ばれる新しいフレームワークを導入する。
論文 参考訳(メタデータ) (2023-04-27T17:42:24Z) - Physics-informed Information Field Theory for Modeling Physical Systems with Uncertainty Quantification [0.0]
情報場理論(IFT)は、必ずしもガウス的ではない分野の統計を行うために必要なツールを提供する。
IFT を物理インフォームド IFT (PIFT) に拡張し,フィールドを記述する物理法則に関する情報を符号化する。
このPIFTから派生した後部は任意の数値スキームとは独立であり、複数のモードをキャプチャすることができる。
本手法は,物理が信頼できないことを正確に認識し,その場合,フィールドの学習を回帰問題として自動的に処理する。
論文 参考訳(メタデータ) (2023-01-18T15:40:19Z) - NeuroFluid: Fluid Dynamics Grounding with Particle-Driven Neural
Radiance Fields [65.07940731309856]
深層学習は流体のような複雑な粒子系の物理力学をモデル化する大きな可能性を示している。
本稿では,流体力学グラウンドリング(fluid dynamics grounding)として知られる,部分的に観測可能なシナリオについて考察する。
我々はNeuroFluidという2段階の異なるネットワークを提案する。
初期形状、粘度、密度が異なる流体の基礎物理学を合理的に推定することが示されている。
論文 参考訳(メタデータ) (2022-03-03T15:13:29Z) - Scalable approach to many-body localization via quantum data [69.3939291118954]
多体局在は、量子多体物理学の非常に難しい現象である。
計算コストの高いステップを回避できるフレキシブルニューラルネットワークベースの学習手法を提案する。
我々のアプローチは、量子多体物理学の新たな洞察を提供するために、大規模な量子実験に適用することができる。
論文 参考訳(メタデータ) (2022-02-17T19:00:09Z) - Learning continuous models for continuous physics [94.42705784823997]
本研究では,科学技術応用のための機械学習モデルを検証する数値解析理論に基づくテストを開発する。
本研究は,従来のMLトレーニング/テスト手法と一体化して,科学・工学分野におけるモデルの検証を行う方法である。
論文 参考訳(メタデータ) (2022-02-17T07:56:46Z) - Heuristic machinery for thermodynamic studies of SU(N) fermions with
neural networks [1.1910997817688513]
機械学習分析を用いて機械を導入する。
我々は、SU($N$)スピン対称性内で相互作用する超低温フェルミオンの密度プロファイルにおける熱力学的研究の導出に機械を用いる。
我々の機械学習フレームワークは、SU($N$) フェルミ液体の理論的記述を検証できる可能性を示している。
論文 参考訳(メタデータ) (2020-06-25T02:31:55Z) - Parsimonious neural networks learn interpretable physical laws [77.34726150561087]
本稿では、ニューラルネットワークと進化的最適化を組み合わせたパシモニクスニューラルネットワーク(PNN)を提案し、精度とパシモニクスのバランスをとるモデルを求める。
アプローチのパワーと汎用性は、古典力学のモデルを開発し、基本特性から材料の融解温度を予測することによって実証される。
論文 参考訳(メタデータ) (2020-05-08T16:15:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。