論文の概要: Neural Product Importance Sampling via Warp Composition
- arxiv url: http://arxiv.org/abs/2409.18974v1
- Date: Sun, 6 Oct 2024 17:40:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-06 05:22:52.738392
- Title: Neural Product Importance Sampling via Warp Composition
- Title(参考訳): ワープ合成によるニューラル製品重要度サンプリング
- Authors: Joey Litalien, Miloš Hašan, Fujun Luan, Krishna Mullia, Iliyan Georgiev,
- Abstract要約: サンプル照明製品積分を効率よく重要にするために, 正規化フローを用いた学習に基づく手法を提案する。
複雑な幾何学, 材料, 照明などを含む様々な応用において, 先行手法による分散の低減を実証する。
- 参考スコア(独自算出の注目度): 9.846719854600709
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Achieving high efficiency in modern photorealistic rendering hinges on using Monte Carlo sampling distributions that closely approximate the illumination integral estimated for every pixel. Samples are typically generated from a set of simple distributions, each targeting a different factor in the integrand, which are combined via multiple importance sampling. The resulting mixture distribution can be far from the actual product of all factors, leading to sub-optimal variance even for direct-illumination estimation. We present a learning-based method that uses normalizing flows to efficiently importance sample illumination product integrals, e.g., the product of environment lighting and material terms. Our sampler composes a flow head warp with an emitter tail warp. The small conditional head warp is represented by a neural spline flow, while the large unconditional tail is discretized per environment map and its evaluation is instant. If the conditioning is low-dimensional, the head warp can be also discretized to achieve even better performance. We demonstrate variance reduction over prior methods on a range of applications comprising complex geometry, materials and illumination.
- Abstract(参考訳): 現代のフォトリアリスティックレンダリングのヒンジにおいて高効率を達成するには、各ピクセルで推定される照明積分を近似したモンテカルロサンプリング分布を用いる。
サンプルは通常、単純な分布の集合から生成され、それぞれがインテグレードの異なる因子をターゲットにしており、複数の重要なサンプリングによって結合される。
結果として生じる混合分布は、すべての因子の実際の生成物から遠く離れており、直接照明推定においても準最適分散をもたらす。
本稿では, 環境照明や材料用語の積である試料照明製品積分を効率よく重要にするために, 正規化フローを用いた学習に基づく手法を提案する。
サンプルはエミッタテールワープでフローヘッドワープを構成する。
小型のコンディショナルヘッドワープはニューラルスプラインフローで表現され、大型のアンコンディショナルテールは環境マップ毎に離散化され、その評価は瞬時に行われる。
コンディショニングが低次元であれば、ヘッドワープを識別してより優れた性能が得られる。
複雑な幾何学, 材料, 照明などを含む様々な応用において, 先行手法による分散の低減を実証する。
関連論文リスト
- Theory on Score-Mismatched Diffusion Models and Zero-Shot Conditional Samplers [49.97755400231656]
本報告では,明示的な次元の一般スコアミスマッチ拡散サンプリング器を用いた最初の性能保証について述べる。
その結果, スコアミスマッチは, 目標分布とサンプリング分布の分布バイアスとなり, 目標分布とトレーニング分布の累積ミスマッチに比例することがわかった。
この結果は、測定ノイズに関係なく、任意の条件モデルに対するゼロショット条件付きサンプリングに直接適用することができる。
論文 参考訳(メタデータ) (2024-10-17T16:42:12Z) - Deep Generative Sampling in the Dual Divergence Space: A Data-efficient & Interpretative Approach for Generative AI [29.13807697733638]
自然画像の生成的サンプリングにおける顕著な成果の上に構築する。
我々は、画像に似たサンプルを生成するという、画期的な挑戦を、潜在的に過度に野心的に提案する。
統計上の課題は、小さなサンプルサイズであり、時には数百人の被験者で構成されている。
論文 参考訳(メタデータ) (2024-04-10T22:35:06Z) - SplitNeRF: Split Sum Approximation Neural Field for Joint Geometry,
Illumination, and Material Estimation [65.99344783327054]
本稿では, 実世界の物体の形状, 材料特性, 照明特性を推定してデジタル化する手法を提案する。
提案手法は,実時間物理ベースのレンダリングに画像ベースの照明で使用される分割和近似を,レーダランスニューラルネットワーク(NeRF)パイプラインに組み込む。
提案手法は,NVIDIA A100 GPUを1つのGPUで1時間に1ドル程度のトレーニングをした後で,最先端のリライト品質を実現することができる。
論文 参考訳(メタデータ) (2023-11-28T10:36:36Z) - NeuS-PIR: Learning Relightable Neural Surface using Pre-Integrated Rendering [23.482941494283978]
本稿では,マルチビュー画像やビデオから可照性神経表面を復元するNeuS-PIR法を提案する。
NeRFや離散メッシュに基づく手法とは異なり,提案手法は暗黙のニューラルサーフェス表現を用いて高品質な幾何学を再構築する。
本手法は,現代のグラフィックスエンジンとシームレスに統合可能なリライトなどの高度なアプリケーションを実現する。
論文 参考訳(メタデータ) (2023-06-13T09:02:57Z) - Boosting Fast and High-Quality Speech Synthesis with Linear Diffusion [85.54515118077825]
本稿では, 常微分方程式に基づく線形拡散モデル(LinDiff)を提案する。
計算複雑性を低減するため、LinDiffでは、入力信号を小さなパッチに分割するパッチベースの処理アプローチを採用している。
我々のモデルは、より高速な合成速度で自己回帰モデルに匹敵する品質の音声を合成することができる。
論文 参考訳(メタデータ) (2023-06-09T07:02:43Z) - Unsupervised Learning of Sampling Distributions for Particle Filters [80.6716888175925]
観測結果からサンプリング分布を学習する4つの方法を提案する。
実験により、学習されたサンプリング分布は、設計された最小縮退サンプリング分布よりも優れた性能を示すことが示された。
論文 参考訳(メタデータ) (2023-02-02T15:50:21Z) - Sensing Cox Processes via Posterior Sampling and Positive Bases [56.82162768921196]
本研究では,空間統計学から広く用いられている点過程の適応センシングについて検討する。
我々は、この強度関数を、特別に構築された正の基底で表される、歪んだガウス過程のサンプルとしてモデル化する。
我々の適応センシングアルゴリズムはランゲヴィン力学を用いており、後続サンプリング(textscCox-Thompson)と後続サンプリング(textscTop2)の原理に基づいている。
論文 参考訳(メタデータ) (2021-10-21T14:47:06Z) - Unrolling Particles: Unsupervised Learning of Sampling Distributions [102.72972137287728]
粒子フィルタリングは複素系の優れた非線形推定を計算するために用いられる。
粒子フィルタは様々なシナリオにおいて良好な推定値が得られることを示す。
論文 参考訳(メタデータ) (2021-10-06T16:58:34Z) - Learning to Importance Sample in Primary Sample Space [22.98252856114423]
本稿では,ニューラルネットワークを用いて,サンプルの集合に代表される所望密度からサンプルを抽出する方法を学習する,新たな重要サンプリング手法を提案する。
提案手法は, 様々なシナリオにおいて, 効果的な分散低減につながることを示す。
論文 参考訳(メタデータ) (2018-08-23T16:55:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。