論文の概要: Mixed Chain-of-Psychotherapies for Emotional Support Chatbot
- arxiv url: http://arxiv.org/abs/2409.19533v1
- Date: Sun, 29 Sep 2024 03:34:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-01 22:05:07.826817
- Title: Mixed Chain-of-Psychotherapies for Emotional Support Chatbot
- Title(参考訳): 感情支援型チャットボットのための混合型心理療法
- Authors: Siyuan Chen, Cong Ming, Zhiling Zhang, Yanyi Chen, Kenny Q. Zhu, Mengyue Wu,
- Abstract要約: PsyMixは精神療法のアプローチの観点から、探索者の状態の分析を統合する。
CoPの混合物を微調整することで、様々な精神療法の強さを取り入れることを学ぶ。
- 参考スコア(独自算出の注目度): 35.71678955114496
- License:
- Abstract: In the realm of mental health support chatbots, it is vital to show empathy and encourage self-exploration to provide tailored solutions. However, current approaches tend to provide general insights or solutions without fully understanding the help-seeker's situation. Therefore, we propose PsyMix, a chatbot that integrates the analyses of the seeker's state from the perspective of a psychotherapy approach (Chain-of-Psychotherapies, CoP) before generating the response, and learns to incorporate the strength of various psychotherapies by fine-tuning on a mixture of CoPs. Through comprehensive evaluation, we found that PsyMix can outperform the ChatGPT baseline, and demonstrate a comparable level of empathy in its responses to that of human counselors.
- Abstract(参考訳): メンタルヘルス支援チャットボットの領域では、共感を示し、適切なソリューションを提供するための自己探索を促進することが不可欠である。
しかし、現在のアプローチは、ヘルプ・シーカーの状況を完全に理解することなく、一般的な洞察や解決策を提供する傾向にある。
そこで我々は, 心理療法(Chain-of-Psychotherapies, CoP) の観点から, 探索者の状態分析を統合したチャットボットPsyMixを提案する。
包括的評価により,PsyMixはChatGPTベースラインを上回り,ヒトカウンセラーに対する共感度は同等であった。
関連論文リスト
- Emotion Talk: Emotional Support via Audio Messages for Psychological Assistance [0.0]
感情トーク(Emotion Talk)とは、心理的援助のための音声メッセージを通じて継続的な感情的支援を提供するシステムである。
このソリューションはポルトガル語話者に焦点を合わせ、システムが言語的かつ文化的に関連があることを保証する。
論文 参考訳(メタデータ) (2024-07-12T05:13:17Z) - LLM Questionnaire Completion for Automatic Psychiatric Assessment [49.1574468325115]
大規模言語モデル(LLM)を用いて、非構造的心理面接を、様々な精神科領域と人格領域にまたがる構造化された質問票に変換する。
得られた回答は、うつ病の標準化された精神医学的指標(PHQ-8)とPTSD(PCL-C)の予測に使用される特徴として符号化される。
論文 参考訳(メタデータ) (2024-06-09T09:03:11Z) - Enhancing Depression-Diagnosis-Oriented Chat with Psychological State Tracking [27.96718892323191]
Depression-diagnosis-oriented chatは、自己表現の患者を誘導し、うつ病検出の主要な症状を収集することを目的としている。
最近の研究は、面接に基づくうつ病の診断をシミュレートするために、タスク指向対話とchitchatを組み合わせることに焦点を当てている。
対話をガイドするための明確なフレームワークは検討されていない。
論文 参考訳(メタデータ) (2024-03-12T07:17:01Z) - HealMe: Harnessing Cognitive Reframing in Large Language Models for Psychotherapy [25.908522131646258]
メンタルエンハンスメント(HealMe)モデルにおける適応言語によるヘルピングとエンパワーメントについて紹介する。
この新しい認知的リフレーミング療法は、根深い否定的思考に効果的に対処し、合理的でバランスの取れた視点を育む。
我々は、認知リフレーミングのパフォーマンスを厳格に評価するために特別に設計された、包括的で専門的な心理学的評価指標を採用した。
論文 参考訳(メタデータ) (2024-02-26T09:10:34Z) - PsychoGAT: A Novel Psychological Measurement Paradigm through Interactive Fiction Games with LLM Agents [68.50571379012621]
心理的な測定は、精神健康、自己理解、そして個人の発達に不可欠である。
心理学ゲームAgenT(サイコガト)は、信頼性、収束妥当性、差別的妥当性などの心理学的指標において統計的に有意な卓越性を達成している。
論文 参考訳(メタデータ) (2024-02-19T18:00:30Z) - K-ESConv: Knowledge Injection for Emotional Support Dialogue Systems via
Prompt Learning [83.19215082550163]
K-ESConvは、感情支援対話システムのための、新しい学習に基づく知識注入手法である。
本研究では,情緒的支援データセットESConvを用いて,外部の専門的情緒的Q&Aフォーラムから知識を抽出し,組み込んだモデルを評価した。
論文 参考訳(メタデータ) (2023-12-16T08:10:10Z) - Chain of Empathy: Enhancing Empathetic Response of Large Language Models Based on Psychotherapy Models [2.679689033125693]
本稿では,心理療法の知見を活かして,大規模言語モデル(LLM)を誘導し,人間の感情状態を理解する新しい方法である「共感の連鎖(CoE)」を提案する。
この方法は認知行動療法(CBT)、弁証的行動療法(DBT)、人中心療法(PCT)、現実療法(RT)など様々な心理療法のアプローチにインスパイアされている。
論文 参考訳(メタデータ) (2023-11-02T02:21:39Z) - Empowering Psychotherapy with Large Language Models: Cognitive
Distortion Detection through Diagnosis of Thought Prompting [82.64015366154884]
本研究では,認知的歪み検出の課題について検討し,思考の早期発見(DoT)を提案する。
DoTは、事実と思考を分離するための主観的評価、思考と矛盾する推論プロセスを引き出すための対照的な推論、認知スキーマを要約するスキーマ分析という3つの段階を通して、患者のスピーチの診断を行う。
実験により、DoTは認知的歪み検出のためのChatGPTよりも大幅に改善され、一方で人間の専門家が承認した高品質な合理性を生成することが示された。
論文 参考訳(メタデータ) (2023-10-11T02:47:21Z) - Response-act Guided Reinforced Dialogue Generation for Mental Health
Counseling [25.524804770124145]
本稿では、メンタルヘルスカウンセリング会話のための対話行動誘導応答生成器READERについて述べる。
READERは変換器上に構築されており、次の発話に対する潜在的な対話行為d(t+1)を共同で予測し、適切な応答u(t+1)を生成する。
ベンチマークカウンセリング会話データセットであるHOPE上でREADERを評価する。
論文 参考訳(メタデータ) (2023-01-30T08:53:35Z) - MET: Multimodal Perception of Engagement for Telehealth [52.54282887530756]
ビデオから人間のエンゲージメントレベルを知覚する学習ベースアルゴリズムMETを提案する。
我々はメンタルヘルス患者のエンゲージメント検出のための新しいデータセットMEDICAをリリースした。
論文 参考訳(メタデータ) (2020-11-17T15:18:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。