Generative Precipitation Downscaling using Score-based Diffusion with Wasserstein Regularization
- URL: http://arxiv.org/abs/2410.00381v1
- Date: Tue, 1 Oct 2024 04:12:40 GMT
- Title: Generative Precipitation Downscaling using Score-based Diffusion with Wasserstein Regularization
- Authors: Yuhao Liu, James Doss-Gollin, Guha Balakrishnan, Ashok Veeraraghavan,
- Abstract summary: A dearth of long-record and high-resolution products can be used to understand local risk and precipitation science.
We present a novel generative diffusion model that downscales globally available gauge-based precipitation products.
We show that WassDiff has better reconstruction accuracy and bias scores than conventional score-based diffusion models.
- Score: 19.32044524311079
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Understanding local risks from extreme rainfall, such as flooding, requires both long records (to sample rare events) and high-resolution products (to assess localized hazards). Unfortunately, there is a dearth of long-record and high-resolution products that can be used to understand local risk and precipitation science. In this paper, we present a novel generative diffusion model that downscales (super-resolves) globally available Climate Prediction Center (CPC) gauge-based precipitation products and ERA5 reanalysis data to generate kilometer-scale precipitation estimates. Downscaling gauge-based precipitation from 55 km to 1 km while recovering extreme rainfall signals poses significant challenges. To enforce our model (named WassDiff) to produce well-calibrated precipitation intensity values, we introduce a Wasserstein Distance Regularization (WDR) term for the score-matching training objective in the diffusion denoising process. We show that WDR greatly enhances the model's ability to capture extreme values compared to diffusion without WDR. Extensive evaluation shows that WassDiff has better reconstruction accuracy and bias scores than conventional score-based diffusion models. Case studies of extreme weather phenomena, like tropical storms and cold fronts, demonstrate WassDiff's ability to produce appropriate spatial patterns while capturing extremes. Such downscaling capability enables the generation of extensive km-scale precipitation datasets from existing historical global gauge records and current gauge measurements in areas without high-resolution radar.
Related papers
- Generative Data Assimilation of Sparse Weather Station Observations at Kilometer Scales [5.453657018459705]
We demonstrate the viability of score-based data assimilation in the context of realistically complex km-scale weather.
By incorporating observations from 40 weather stations, 10% lower RMSEs on left-out stations are attained.
It is a ripe time to explore extensions that combine increasingly ambitious regional state generators with an increasing set of in situ, ground-based, and satellite remote sensing data streams.
arXiv Detail & Related papers (2024-06-19T10:28:11Z) - CasCast: Skillful High-resolution Precipitation Nowcasting via Cascaded
Modelling [93.65319031345197]
We propose CasCast, a cascaded framework composed of a deterministic and a probabilistic part to decouple predictions for mesoscale precipitation distributions and small-scale patterns.
CasCast significantly surpasses the baseline (up to +91.8%) for regional extreme-precipitation nowcasting.
arXiv Detail & Related papers (2024-02-06T08:30:47Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
This work presents FengWu-GHR, the first data-driven global weather forecasting model running at the 0.09$circ$ horizontal resolution.
It introduces a novel approach that opens the door for operating ML-based high-resolution forecasts by inheriting prior knowledge from a low-resolution model.
The hindcast of weather prediction in 2022 indicates that FengWu-GHR is superior to the IFS-HRES.
arXiv Detail & Related papers (2024-01-28T13:23:25Z) - Precipitation Downscaling with Spatiotemporal Video Diffusion [19.004369237435437]
This work extends recent video diffusion models to precipitation super-resolution.
We use a deterministic downscaler followed by a temporally-conditioned diffusion model to capture noise characteristics and high-frequency patterns.
Our analysis, capturing CRPS, MSE, precipitation distributions, and qualitative aspects using California and the Himalayas, establishes our method as a new standard for data-driven precipitation downscaling.
arXiv Detail & Related papers (2023-12-11T02:38:07Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
State of the art for physical hazard prediction from weather and climate requires expensive km-scale numerical simulations driven by coarser resolution global inputs.
Here, a generative diffusion architecture is explored for downscaling such global inputs to km-scale, as a cost-effective machine learning alternative.
The model is trained to predict 2km data from a regional weather model over Taiwan, conditioned on a 25km global reanalysis.
arXiv Detail & Related papers (2023-09-24T19:57:22Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
High-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance.
We tackle drought data by introducing an end-to-end approach that adopts a systematic end-to-end approach.
Key findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts.
arXiv Detail & Related papers (2023-09-12T13:28:06Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
We compare different deep learning models for prediction of water depth at high spatial resolution.
Deep learning models are trained to reproduce the data simulated by the CADDIES cellular-automata flood model.
Our results show that the deep learning models present in general lower errors compared to the other methods.
arXiv Detail & Related papers (2023-02-20T16:08:54Z) - Rethinking Real-world Image Deraining via An Unpaired Degradation-Conditioned Diffusion Model [51.49854435403139]
We propose RainDiff, the first real-world image deraining paradigm based on diffusion models.
We introduce a stable and non-adversarial unpaired cycle-consistent architecture that can be trained, end-to-end, with only unpaired data for supervision.
We also propose a degradation-conditioned diffusion model that refines the desired output via a diffusive generative process conditioned by learned priors of multiple rain degradations.
arXiv Detail & Related papers (2023-01-23T13:34:01Z) - A Generative Deep Learning Approach to Stochastic Downscaling of
Precipitation Forecasts [0.5906031288935515]
Generative adversarial networks (GANs) have been demonstrated by the computer vision community to be successful at super-resolution problems.
We show that GANs and VAE-GANs can match the statistical properties of state-of-the-art pointwise post-processing methods whilst creating high-resolution, spatially coherent precipitation maps.
arXiv Detail & Related papers (2022-04-05T07:19:42Z) - Deep-learning based down-scaling of summer monsoon rainfall data over
Indian region [0.0]
Dynamical and statistical downscaling models are often used to get information at high-resolution gridded data over larger domains.
Deep Learning (DL) based methods provide an efficient solution in downscaling rainfall data for regional climate forecasting and real-time rainfall observation data at high spatial resolutions.
In this work, we employed three deep learning-based algorithms derived from the super-resolution convolutional neural network (SRCNN) methods, to produce 4x-times high-resolution downscaled rainfall data during the summer monsoon season.
arXiv Detail & Related papers (2020-11-23T10:24:17Z) - TRU-NET: A Deep Learning Approach to High Resolution Prediction of
Rainfall [21.399707529966474]
We present TRU-NET, an encoder-decoder model featuring a novel 2D cross attention mechanism between contiguous convolutional-recurrent layers.
We use a conditional-continuous loss function to capture the zero-skewed %extreme event patterns of rainfall.
Experiments show that our model consistently attains lower RMSE and MAE scores than a DL model prevalent in short term precipitation prediction.
arXiv Detail & Related papers (2020-08-20T17:27:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.