An uncertainty-aware Digital Shadow for underground multimodal CO2 storage monitoring
- URL: http://arxiv.org/abs/2410.01218v1
- Date: Wed, 2 Oct 2024 03:58:45 GMT
- Title: An uncertainty-aware Digital Shadow for underground multimodal CO2 storage monitoring
- Authors: Abhinav Prakash Gahlot, Rafael Orozco, Ziyi Yin, Felix J. Herrmann,
- Abstract summary: Geological Carbon Storage GCS is arguably the only scalable net-negative CO2 emission technology available.
A machine learning based data-assimilation framework is introduced and validated on realistic numerical simulations.
This work represents the first proof of concept of an uncertainty-aware in-principle scalable Digital Shadow.
- Score: 1.1249583407496222
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Geological Carbon Storage GCS is arguably the only scalable net-negative CO2 emission technology available While promising subsurface complexities and heterogeneity of reservoir properties demand a systematic approach to quantify uncertainty when optimizing production and mitigating storage risks which include assurances of Containment and Conformance of injected supercritical CO2 As a first step towards the design and implementation of a Digital Twin for monitoring underground storage operations a machine learning based data-assimilation framework is introduced and validated on carefully designed realistic numerical simulations As our implementation is based on Bayesian inference but does not yet support control and decision-making we coin our approach an uncertainty-aware Digital Shadow To characterize the posterior distribution for the state of CO2 plumes conditioned on multi-modal time-lapse data the envisioned Shadow combines techniques from Simulation-Based Inference SBI and Ensemble Bayesian Filtering to establish probabilistic baselines and assimilate multi-modal data for GCS problems that are challenged by large degrees of freedom nonlinear multi-physics non-Gaussianity and computationally expensive to evaluate fluid flow and seismic simulations To enable SBI for dynamic systems a recursive scheme is proposed where the Digital Shadows neural networks are trained on simulated ensembles for their state and observed data well and/or seismic Once training is completed the systems state is inferred when time-lapse field data becomes available In this computational study we observe that a lack of knowledge on the permeability field can be factored into the Digital Shadows uncertainty quantification To our knowledge this work represents the first proof of concept of an uncertainty-aware in-principle scalable Digital Shadow.
Related papers
- Enhancing Robustness Of Digital Shadow For CO2 Storage Monitoring With Augmented Rock Physics Modeling [0.276240219662896]
Time-lapse seismic imaging is essential for tracking CO2 migration but often struggles to capture the complexities of multi-phase subsurface flow.
Digital Shadows (DS), leveraging machine learning-driven data assimilation techniques such as nonlinear Bayesian filtering and generative AI, provide a more detailed, uncertainty-aware monitoring approach.
This study demonstrates that augmenting forecast ensembles with diverse rock physics models mitigates the impact of incorrect assumptions and improves predictive accuracy.
arXiv Detail & Related papers (2025-02-11T01:33:35Z) - Diffusion-based subsurface multiphysics monitoring and forecasting [4.2193475197905705]
We propose a novel subsurface multiphysics monitoring and forecasting framework utilizing video diffusion models.
This approach can generate high-quality representations of CO$2$ evolution and associated changes in subsurface elastic properties.
Tests based on the Compass model show that the proposed method successfully captured the inherently complex physical phenomena associated with CO$$ monitoring.
arXiv Detail & Related papers (2024-07-25T23:04:37Z) - The Significance of Latent Data Divergence in Predicting System Degradation [1.2058600649065616]
Condition-Based Maintenance is pivotal in enabling the early detection of potential failures in engineering systems.
We introduce a novel methodology grounded in the analysis of statistical similarity within latent data from system components.
We infer the similarity between systems by evaluating the divergence of these priors, offering a nuanced understanding of individual system behaviors.
arXiv Detail & Related papers (2024-06-13T11:41:20Z) - Sparse Attention-driven Quality Prediction for Production Process Optimization in Digital Twins [53.70191138561039]
We propose to deploy a digital twin of the production line by encoding its operational logic in a data-driven approach.
We adopt a quality prediction model for production process based on self-attention-enabled temporal convolutional neural networks.
Our operation experiments on a specific tobacco shredding line demonstrate that the proposed digital twin-based production process optimization method fosters seamless integration between virtual and real production lines.
arXiv Detail & Related papers (2024-05-20T09:28:23Z) - ShadowNet for Data-Centric Quantum System Learning [188.683909185536]
We propose a data-centric learning paradigm combining the strength of neural-network protocols and classical shadows.
Capitalizing on the generalization power of neural networks, this paradigm can be trained offline and excel at predicting previously unseen systems.
We present the instantiation of our paradigm in quantum state tomography and direct fidelity estimation tasks and conduct numerical analysis up to 60 qubits.
arXiv Detail & Related papers (2023-08-22T09:11:53Z) - A digital twin framework for civil engineering structures [0.6249768559720122]
The digital twin concept represents an appealing opportunity to advance condition-based and predictive maintenance paradigms.
This work proposes a predictive digital twin approach to the health monitoring, maintenance, and management planning of civil engineering structures.
arXiv Detail & Related papers (2023-08-02T21:38:36Z) - Enhanced multi-fidelity modelling for digital twin and uncertainty
quantification [0.0]
Data-driven models play a crucial role in digital twins, enabling real-time updates and predictions.
The fidelity of available data and the scarcity of accurate sensor data often hinder the efficient learning of surrogate models.
We propose a novel framework that begins by developing a robust multi-fidelity surrogate model.
arXiv Detail & Related papers (2023-06-26T05:58:17Z) - Real-time high-resolution CO$_2$ geological storage prediction using
nested Fourier neural operators [58.728312684306545]
Carbon capture and storage (CCS) plays an essential role in global decarbonization.
Scaling up CCS deployment requires accurate and high-resolution modeling of the storage reservoir pressure buildup and the gaseous plume migration.
We introduce Nested Fourier Neural Operator (FNO), a machine-learning framework for high-resolution dynamic 3D CO2 storage modeling at a basin scale.
arXiv Detail & Related papers (2022-10-31T04:04:03Z) - Unsupervised Scale-consistent Depth Learning from Video [131.3074342883371]
We propose a monocular depth estimator SC-Depth, which requires only unlabelled videos for training.
Thanks to the capability of scale-consistent prediction, we show that our monocular-trained deep networks are readily integrated into the ORB-SLAM2 system.
The proposed hybrid Pseudo-RGBD SLAM shows compelling results in KITTI, and it generalizes well to the KAIST dataset without additional training.
arXiv Detail & Related papers (2021-05-25T02:17:56Z) - Data-driven generation of plausible tissue geometries for realistic
photoacoustic image synthesis [53.65837038435433]
Photoacoustic tomography (PAT) has the potential to recover morphological and functional tissue properties.
We propose a novel approach to PAT data simulation, which we refer to as "learning to simulate"
We leverage the concept of Generative Adversarial Networks (GANs) trained on semantically annotated medical imaging data to generate plausible tissue geometries.
arXiv Detail & Related papers (2021-03-29T11:30:18Z) - A nudged hybrid analysis and modeling approach for realtime wake-vortex
transport and decay prediction [0.0]
Long short-term memory (LSTM) nudging framework for enhancement of reduced order models (ROMs) of fluid flows utilized noisy measurements for air traffic improvements.
We build on the fact that in realistic application, there are uncertainties in initial and boundary conditions, model parameters, as well as measurements.
In the presented LSTM nudging (LSTM-N) approach, we fuse forecasts from a combination of imperfect GROM and uncertain state estimates, with sparseian sensor measurements to provide more reliable predictions in a dynamical data assimilation framework.
arXiv Detail & Related papers (2020-08-05T23:47:15Z) - An Uncertainty-based Human-in-the-loop System for Industrial Tool Wear
Analysis [68.8204255655161]
We show that uncertainty measures based on Monte-Carlo dropout in the context of a human-in-the-loop system increase the system's transparency and performance.
A simulation study demonstrates that the uncertainty-based human-in-the-loop system increases performance for different levels of human involvement.
arXiv Detail & Related papers (2020-07-14T15:47:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.