AssessITS: Integrating procedural guidelines and practical evaluation metrics for organizational IT and Cybersecurity risk assessment
- URL: http://arxiv.org/abs/2410.01750v1
- Date: Wed, 2 Oct 2024 17:01:59 GMT
- Title: AssessITS: Integrating procedural guidelines and practical evaluation metrics for organizational IT and Cybersecurity risk assessment
- Authors: Mir Mehedi Rahman, Naresh Kshetri, Sayed Abu Sayeed, Md Masud Rana,
- Abstract summary: 'AssessITS' aims to enable organizations to enhance their IT security strength actionable based on internationally recognized standards.
'AssessITS' aims to enable organizations to enhance their IT security strength actionable based on internationally recognized standards.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In today's digitally driven landscape, robust Information Technology (IT) risk assessment practices are essential for safeguarding systems, digital communication, and data. This paper introduces 'AssessITS', an actionable method designed to provide organizations with comprehensive guidelines for conducting IT and cybersecurity risk assessments. Drawing extensively from NIST 800-30 Rev 1, COBIT 5, and ISO 31000, 'AssessITS' bridges the gap between high-level theoretical standards and practical implementation challenges. The paper outlines a step-by-step methodology that organizations can simply adopt to systematically identify, analyze, and mitigate IT risks. By simplifying complex principles into actionable procedures, this framework equips practitioners with the tools needed to perform risk assessments independently, without too much reliance on external vendors. The guidelines are developed to be straightforward, integrating practical evaluation metrics that allow for the precise quantification of asset values, threat levels, vulnerabilities, and impacts on confidentiality, integrity, and availability. This approach ensures that the risk assessment process is not only comprehensive but also accessible, enabling decision-makers to implement effective risk mitigation strategies customized to their unique operational contexts. 'AssessITS' aims to enable organizations to enhance their IT security strength through practical, actionable guidance based on internationally recognized standards.
Related papers
- EAIRiskBench: Towards Evaluating Physical Risk Awareness for Task Planning of Foundation Model-based Embodied AI Agents [47.69642609574771]
Embodied artificial intelligence (EAI) integrates advanced AI models into physical entities for real-world interaction.
Foundation models as the "brain" of EAI agents for high-level task planning have shown promising results.
However, the deployment of these agents in physical environments presents significant safety challenges.
This study introduces EAIRiskBench, a novel framework for automated physical risk assessment in EAI scenarios.
arXiv Detail & Related papers (2024-08-08T13:19:37Z) - Threat-Informed Cyber Resilience Index: A Probabilistic Quantitative Approach to Measure Defence Effectiveness Against Cyber Attacks [0.36832029288386137]
This paper introduces the Cyber Resilience Index (CRI), a threat-informed probabilistic approach to quantifying an organisation's defence effectiveness against cyber-attacks (campaigns)
Building upon the Threat-Intelligence Based Security Assessment (TIBSA) methodology, we present a mathematical model that translates complex threat intelligence into an actionable, unified metric similar to a stock market index, that executives can understand and interact with while teams can act upon.
arXiv Detail & Related papers (2024-06-27T17:51:48Z) - Cross-Modality Safety Alignment [73.8765529028288]
We introduce a novel safety alignment challenge called Safe Inputs but Unsafe Output (SIUO) to evaluate cross-modality safety alignment.
To empirically investigate this problem, we developed the SIUO, a cross-modality benchmark encompassing 9 critical safety domains, such as self-harm, illegal activities, and privacy violations.
Our findings reveal substantial safety vulnerabilities in both closed- and open-source LVLMs, underscoring the inadequacy of current models to reliably interpret and respond to complex, real-world scenarios.
arXiv Detail & Related papers (2024-06-21T16:14:15Z) - Towards Guaranteed Safe AI: A Framework for Ensuring Robust and Reliable AI Systems [88.80306881112313]
We will introduce and define a family of approaches to AI safety, which we will refer to as guaranteed safe (GS) AI.
The core feature of these approaches is that they aim to produce AI systems which are equipped with high-assurance quantitative safety guarantees.
We outline a number of approaches for creating each of these three core components, describe the main technical challenges, and suggest a number of potential solutions to them.
arXiv Detail & Related papers (2024-05-10T17:38:32Z) - Unveiling the Misuse Potential of Base Large Language Models via In-Context Learning [61.2224355547598]
Open-sourcing of large language models (LLMs) accelerates application development, innovation, and scientific progress.
Our investigation exposes a critical oversight in this belief.
By deploying carefully designed demonstrations, our research demonstrates that base LLMs could effectively interpret and execute malicious instructions.
arXiv Detail & Related papers (2024-04-16T13:22:54Z) - Application of the NIST AI Risk Management Framework to Surveillance Technology [1.5442389863546546]
This study offers an in-depth analysis of the application and implications of the National Institute of Standards and Technology's AI Risk Management Framework (NIST AI RMF)
Given the inherently high-risk and consequential nature of facial recognition systems, our research emphasizes the critical need for a structured approach to risk management in this sector.
arXiv Detail & Related papers (2024-03-22T23:07:11Z) - Mapping LLM Security Landscapes: A Comprehensive Stakeholder Risk Assessment Proposal [0.0]
We propose a risk assessment process using tools like the risk rating methodology which is used for traditional systems.
We conduct scenario analysis to identify potential threat agents and map the dependent system components against vulnerability factors.
We also map threats against three key stakeholder groups.
arXiv Detail & Related papers (2024-03-20T05:17:22Z) - Layered Security Guidance for Data Asset Management in Additive Manufacturing [0.0]
This paper proposes leveraging the National Institute of Standards and Technology's Cybersecurity Framework to develop layered, risk-based guidance for fulfilling specific security outcomes.
The authors believe implementation of the layered approach would result in value-added, non-redundant security guidance for AM that is consistent with the preexisting guidance.
arXiv Detail & Related papers (2023-09-28T20:48:40Z) - Evaluating Model-free Reinforcement Learning toward Safety-critical
Tasks [70.76757529955577]
This paper revisits prior work in this scope from the perspective of state-wise safe RL.
We propose Unrolling Safety Layer (USL), a joint method that combines safety optimization and safety projection.
To facilitate further research in this area, we reproduce related algorithms in a unified pipeline and incorporate them into SafeRL-Kit.
arXiv Detail & Related papers (2022-12-12T06:30:17Z) - Quantitative AI Risk Assessments: Opportunities and Challenges [9.262092738841979]
AI-based systems are increasingly being leveraged to provide value to organizations, individuals, and society.
Risks have led to proposed regulations, litigation, and general societal concerns.
This paper explores the concept of a quantitative AI Risk Assessment.
arXiv Detail & Related papers (2022-09-13T21:47:25Z) - Evaluating the Safety of Deep Reinforcement Learning Models using
Semi-Formal Verification [81.32981236437395]
We present a semi-formal verification approach for decision-making tasks based on interval analysis.
Our method obtains comparable results over standard benchmarks with respect to formal verifiers.
Our approach allows to efficiently evaluate safety properties for decision-making models in practical applications.
arXiv Detail & Related papers (2020-10-19T11:18:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.