論文の概要: SegHeD: Segmentation of Heterogeneous Data for Multiple Sclerosis Lesions with Anatomical Constraints
- arxiv url: http://arxiv.org/abs/2410.01766v1
- Date: Wed, 2 Oct 2024 17:21:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-04 15:24:19.087577
- Title: SegHeD: Segmentation of Heterogeneous Data for Multiple Sclerosis Lesions with Anatomical Constraints
- Title(参考訳): 解剖学的制約を伴う多発性硬化症病変に対するSegHeDの有用性
- Authors: Berke Doga Basaran, Xinru Zhang, Paul M. Matthews, Wenjia Bai,
- Abstract要約: 機械学習モデルは、自動MS病変セグメンテーションの大きな可能性を実証している。
SegHeDは、異種データを入力として組み込むことができる、新しいマルチデータセットマルチタスクセグメンテーションモデルである。
SegHeDは5つのMSデータセットで評価され、すべての、新しい、消滅するセグメンテーションで高いパフォーマンスを達成する。
- 参考スコア(独自算出の注目度): 1.498084483844508
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Assessment of lesions and their longitudinal progression from brain magnetic resonance (MR) images plays a crucial role in diagnosing and monitoring multiple sclerosis (MS). Machine learning models have demonstrated a great potential for automated MS lesion segmentation. Training such models typically requires large-scale high-quality datasets that are consistently annotated. However, MS imaging datasets are often small, segregated across multiple sites, with different formats (cross-sectional or longitudinal), and diverse annotation styles. This poses a significant challenge to train a unified MS lesion segmentation model. To tackle this challenge, we present SegHeD, a novel multi-dataset multi-task segmentation model that can incorporate heterogeneous data as input and perform all-lesion, new-lesion, as well as vanishing-lesion segmentation. Furthermore, we account for domain knowledge about MS lesions, incorporating longitudinal, spatial, and volumetric constraints into the segmentation model. SegHeD is assessed on five MS datasets and achieves a high performance in all, new, and vanishing-lesion segmentation, outperforming several state-of-the-art methods in this field.
- Abstract(参考訳): 多発性硬化症 (MS) の診断・モニタリングにおいて, 脳MRI画像からの病変の評価とその経時的進展が重要な役割を担っている。
機械学習モデルは、自動MS病変セグメンテーションの大きな可能性を実証している。
このようなモデルのトレーニングは通常、一貫して注釈付けされた大規模で高品質なデータセットを必要とする。
しかし、MSイメージングデータセットは、しばしば小さく、複数の部位にまたがって分離され、異なるフォーマット(断面または縦方向)と多様なアノテーションスタイルを持つ。
これは統合MS病変セグメンテーションモデルをトレーニングする上で大きな課題となる。
この課題に対処するために,異種データを入力として組み込んだ新しいマルチデータセットマルチタスクセグメンテーションモデルであるSegHeDを提案する。
さらに,MS病変の領域知識を考慮し,時間的,空間的,体積的制約をセグメンテーションモデルに組み込んだ。
SegHeDは5つのMSデータセットに基づいて評価され、すべての、新しい、そして消滅するセグメンテーションにおいて高いパフォーマンスを達成する。
関連論文リスト
- AMA-SAM: Adversarial Multi-Domain Alignment of Segment Anything Model for High-Fidelity Histology Nuclei Segmentation [2.52189149988768]
本稿では,Segment Anything Model(SAM)を拡張したAdrial Multi-domain Alignment of Segment Anything Model(AMA-SAM)を紹介した。
まず、ドメイン不変表現学習を促進するために、多様なドメインの特徴を調和させる条件勾配反転層(CGRL)を提案する。
次に,高分解能デコーダ (HR-Decoder) を設計することにより,SAM固有の低分解能出力に対処する。
論文 参考訳(メタデータ) (2025-03-27T16:59:39Z) - Foundation Model for Whole-Heart Segmentation: Leveraging Student-Teacher Learning in Multi-Modal Medical Imaging [0.510750648708198]
心血管疾患の診断にはCTとMRIによる全肝分画が不可欠である。
既存の方法は、モダリティ固有のバイアスと、広範なラベル付きデータセットの必要性に苦慮している。
学生-教師アーキテクチャに基づく自己指導型学習フレームワークを用いて,全音節セグメンテーションのための基礎モデルを提案する。
論文 参考訳(メタデータ) (2025-03-24T14:47:54Z) - SegHeD+: Segmentation of Heterogeneous Data for Multiple Sclerosis Lesions with Anatomical Constraints and Lesion-aware Augmentation [1.6365496769445946]
複数のデータセットやタスクを扱える新しいセグメンテーションモデルであるSegHeD+を紹介します。
分割モデルに経時的,解剖学的,体積的制約を組み込むことにより,MS病変に関するドメイン知識を統合する。
SegHeD+は5つのMSデータセットで評価され、すべての、新しい、消滅する病変のセグメンテーションにおいて優れたパフォーマンスを示す。
論文 参考訳(メタデータ) (2024-12-14T19:44:25Z) - Enhanced MRI Representation via Cross-series Masking [48.09478307927716]
自己教師型でMRI表現を効果的に学習するためのクロスシリーズ・マスキング(CSM)戦略
メソッドは、パブリックデータセットと社内データセットの両方で最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-12-10T10:32:09Z) - MRGen: Segmentation Data Engine For Underrepresented MRI Modalities [59.61465292965639]
稀ながら臨床的に重要な画像モダリティのための医用画像分割モデルの訓練は、注釈付きデータの不足により困難である。
本稿では、生成モデルを利用してトレーニングデータを合成し、未表現のモダリティに対するセグメンテーションモデルを訓練する。
論文 参考訳(メタデータ) (2024-12-04T16:34:22Z) - Toward Generalizable Multiple Sclerosis Lesion Segmentation Models [0.0]
本研究の目的は,多様な評価データセットにまたがる一般化モデルを開発することである。
私たちは、最先端のUNet++アーキテクチャを体系的にトレーニングした、高品質で公開可能なすべてのMS病変セグメンテーションデータセットを使用しました。
論文 参考訳(メタデータ) (2024-10-25T15:21:54Z) - UNICORN: A Deep Learning Model for Integrating Multi-Stain Data in Histopathology [2.9389205138207277]
UNICORNは動脈硬化の重症度予測のための多段階組織学を処理できるマルチモーダルトランスフォーマーである。
このアーキテクチャは、2段階のエンドツーエンドのトレーニング可能なモデルと、トランスフォーマーの自己保持ブロックを利用する特殊なモジュールから構成される。
UNICORNは0.67の分類精度を達成し、他の最先端モデルを上回った。
論文 参考訳(メタデータ) (2024-09-26T12:13:52Z) - Modality-agnostic Domain Generalizable Medical Image Segmentation by Multi-Frequency in Multi-Scale Attention [1.1155836879100416]
医用画像セグメンテーションのためのModality-Agnostic Domain Generalizable Network (MADGNet)を提案する。
MFMSAブロックは空間的特徴抽出の過程を洗練させる。
E-SDMは、深い監督を伴うマルチタスク学習における情報損失を軽減する。
論文 参考訳(メタデータ) (2024-05-10T07:34:36Z) - Mask-Enhanced Segment Anything Model for Tumor Lesion Semantic Segmentation [48.107348956719775]
Mask-Enhanced SAM (M-SAM) は, 腫瘍の3次元セグメント化に適した革新的なアーキテクチャである。
本稿では,M-SAM内におけるMask-Enhanced Adapter (MEA) を提案する。
我々のM-SAMは高いセグメンテーション精度を達成し、またロバストな一般化を示す。
論文 参考訳(メタデータ) (2024-03-09T13:37:02Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
医用画像のセグメンテーションはコンピュータ支援診断において重要な役割を担っている。
半教師型医用画像(DEC-Seg)のための新しいDual-scale Enhanced and Cross-generative consistency learning frameworkを提案する。
論文 参考訳(メタデータ) (2023-12-26T12:56:31Z) - Analysing the effectiveness of a generative model for semi-supervised
medical image segmentation [23.898954721893855]
自動セグメンテーションにおける最先端技術は、U-Netのような差別モデルを用いて、教師付き学習のままである。
半教師付き学習(SSL)は、より堅牢で信頼性の高いモデルを得るために、重複のないデータの豊富さを活用する。
セマンティックGANのような深層生成モデルは、医療画像分割問題に取り組むための真に実行可能な代替手段である。
論文 参考訳(メタデータ) (2022-11-03T15:19:59Z) - AMOS: A Large-Scale Abdominal Multi-Organ Benchmark for Versatile
Medical Image Segmentation [32.938687630678096]
AMOSは、腹部臓器の分節のための大規模で多様な臨床データセットである。
さまざまなターゲットとシナリオの下で堅牢なセグメンテーションアルゴリズムを研究する上で、難しい例とテストベッドを提供する。
我々は、この新たな挑戦的データセット上で既存の方法の現状を評価するために、最先端の医療セグメンテーションモデルをいくつかベンチマークする。
論文 参考訳(メタデータ) (2022-06-16T09:27:56Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
診断によって誘導される画像データと遺伝データを統合し、解釈可能なバイオマーカーを提供する新しいディープニューラルネットワークアーキテクチャを提案する。
2つの機能的MRI(fMRI)パラダイムとSingle Nucleotide Polymorphism (SNP)データを含む統合失調症の集団研究で本モデルを評価した。
論文 参考訳(メタデータ) (2021-01-27T19:28:04Z) - Towards Robust Partially Supervised Multi-Structure Medical Image
Segmentation on Small-Scale Data [123.03252888189546]
データ不足下における部分教師付き学習(PSL)における方法論的ギャップを埋めるために,不確実性下でのビシナルラベル(VLUU)を提案する。
マルチタスク学習とヴィジナルリスク最小化によって動機づけられたVLUUは、ビジナルラベルを生成することによって、部分的に教師付き問題を完全な教師付き問題に変換する。
本研究は,ラベル効率の高い深層学習における新たな研究の方向性を示唆するものである。
論文 参考訳(メタデータ) (2020-11-28T16:31:00Z) - Co-Heterogeneous and Adaptive Segmentation from Multi-Source and
Multi-Phase CT Imaging Data: A Study on Pathological Liver and Lesion
Segmentation [48.504790189796836]
我々は,新しいセグメンテーション戦略,コヘテロジネティック・アダプティブセグメンテーション(CHASe)を提案する。
本稿では,外見に基づく半スーパービジョン,マスクに基づく対向ドメイン適応,擬似ラベルを融合した多目的フレームワークを提案する。
CHASeは4.2% sim 9.4%$の範囲で、病理的な肝臓マスクDice-Sorensen係数をさらに改善することができる。
論文 参考訳(メタデータ) (2020-05-27T06:58:39Z) - MS-Net: Multi-Site Network for Improving Prostate Segmentation with
Heterogeneous MRI Data [75.73881040581767]
本稿では,ロバスト表現を学習し,前立腺のセグメンテーションを改善するための新しいマルチサイトネットワーク(MS-Net)を提案する。
当社のMS-Netは,すべてのデータセットのパフォーマンスを一貫して改善し,マルチサイト学習における最先端の手法よりも優れています。
論文 参考訳(メタデータ) (2020-02-09T14:11:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。